Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another handy role for pockets

14.06.2011
Tiny membrane pockets that gain catalytic activity upon self-assembly in water shed light on biological enzymatic processes

Biological membranes play key roles in the body. They determine, for example, how molecules enter and exit cells, and the architecture of their lipid bilayer allows them to host enzymes and enhance their catalytic performance under natural conditions.

To clarify the mechanisms that govern these processes, a team of chemists in Japan has generated in water tiny, catalytically active, free-standing membrane pockets, called vesicles, using a self-assembly method based on a small palladium complex[1]. The team was led by Yasuhiro Uozumi from the RIKEN Advanced Science Institute in Wako and the Institute for Molecular Science in Okazaki.

Many researchers have already used ultra-small self-assembled pockets to perform reactions in solution while protecting the reagents from their potentially destructive surroundings. However, unlike Uozumi’s vesicles, few of these reaction vessels were ‘architecture-based’ catalysts; that is, structures that exhibit activity only when self-assembled.

The team’s palladium complex is a rigid, planar, pincer-like structure with hydrophilic ‘arms’ and hydrophobic ‘legs’. The different affinity for water and orientation of these functional groups directs vesicle assembly in water. Furthermore, these properties allow the complex to gain unique catalytic activity for specific chemical reactions. “This, conceivably, would approach an artificial enzymatic system,” notes Uozumi.

“The vesicle, which bears a hydrophobic inner region, was self-constructed in water, and this inner region served as a reservoir for the substrate,” says Uozumi. He explains that the entire reaction system—including the medium, molecular structure of the palladium complex, and substrate—cooperatively governs a ‘self-concentration’ process. During this process, substrate molecules penetrate the hydrophilic outer shell and accumulate in the hydrophobic reservoir where the reaction takes place (Fig. 1). After a quick catalytic transformation, the product exits the vesicle.

The researchers conducted a series of carbon–carbon bond-forming reactions, which are central to chemical synthesis, in the presence of the vesicles. They found that the vesicles stimulated the transformations in high yields at room temperature in water. The palladium complex was also recoverable in its original, disassembled form after the reaction. When they ran the same experiment in hydrophobic organic solvents, which hinder vesicle formation, no catalysis occurred—proof that water-mediated self-assembly is crucial for the catalytic activity of the complex.

The team is currently developing new catalysts by changing the hydrophilic and hydrophobic groups and substituting palladium for other metal species. It is also applying these catalysts to other organic reactions. These water-enabled transformations will lead to greener and safer approaches to organic chemistry, Uozumi concludes.

The corresponding author for this highlight is based at the Green Nanocatalysis Research Team, RIKEN Advance Science Institute

Journal information

[1] Hamasaka, G., Muto, T. & Uozumi, Y. Molecular-architecture-based administration of catalysis in water: self-assembly of an amphiphilic palladium pincer complex. Angewandte Chemie, International Edition 50, 4876–4878 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>