Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another handy role for pockets

14.06.2011
Tiny membrane pockets that gain catalytic activity upon self-assembly in water shed light on biological enzymatic processes

Biological membranes play key roles in the body. They determine, for example, how molecules enter and exit cells, and the architecture of their lipid bilayer allows them to host enzymes and enhance their catalytic performance under natural conditions.

To clarify the mechanisms that govern these processes, a team of chemists in Japan has generated in water tiny, catalytically active, free-standing membrane pockets, called vesicles, using a self-assembly method based on a small palladium complex[1]. The team was led by Yasuhiro Uozumi from the RIKEN Advanced Science Institute in Wako and the Institute for Molecular Science in Okazaki.

Many researchers have already used ultra-small self-assembled pockets to perform reactions in solution while protecting the reagents from their potentially destructive surroundings. However, unlike Uozumi’s vesicles, few of these reaction vessels were ‘architecture-based’ catalysts; that is, structures that exhibit activity only when self-assembled.

The team’s palladium complex is a rigid, planar, pincer-like structure with hydrophilic ‘arms’ and hydrophobic ‘legs’. The different affinity for water and orientation of these functional groups directs vesicle assembly in water. Furthermore, these properties allow the complex to gain unique catalytic activity for specific chemical reactions. “This, conceivably, would approach an artificial enzymatic system,” notes Uozumi.

“The vesicle, which bears a hydrophobic inner region, was self-constructed in water, and this inner region served as a reservoir for the substrate,” says Uozumi. He explains that the entire reaction system—including the medium, molecular structure of the palladium complex, and substrate—cooperatively governs a ‘self-concentration’ process. During this process, substrate molecules penetrate the hydrophilic outer shell and accumulate in the hydrophobic reservoir where the reaction takes place (Fig. 1). After a quick catalytic transformation, the product exits the vesicle.

The researchers conducted a series of carbon–carbon bond-forming reactions, which are central to chemical synthesis, in the presence of the vesicles. They found that the vesicles stimulated the transformations in high yields at room temperature in water. The palladium complex was also recoverable in its original, disassembled form after the reaction. When they ran the same experiment in hydrophobic organic solvents, which hinder vesicle formation, no catalysis occurred—proof that water-mediated self-assembly is crucial for the catalytic activity of the complex.

The team is currently developing new catalysts by changing the hydrophilic and hydrophobic groups and substituting palladium for other metal species. It is also applying these catalysts to other organic reactions. These water-enabled transformations will lead to greener and safer approaches to organic chemistry, Uozumi concludes.

The corresponding author for this highlight is based at the Green Nanocatalysis Research Team, RIKEN Advance Science Institute

Journal information

[1] Hamasaka, G., Muto, T. & Uozumi, Y. Molecular-architecture-based administration of catalysis in water: self-assembly of an amphiphilic palladium pincer complex. Angewandte Chemie, International Edition 50, 4876–4878 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>