Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Hairy” Vehicles in 3D

19.05.2011
They move cells, process external signals or ensure the correct arrangement of the internal organs.

But the small hair-like structures at the surface of cells can only fulfill these tasks, if their transport system supplies them with all essential building blocks. Scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, now managed for the first time to decipher the three-dimensional structure of one part of this complex transport system. That way, they were able to gain important insights into its functional mechanisms. These results can possibly help to prevent pathogenic disruptions. (EMBO Journal, May 19, 2011)


The molecular structure of the two proteins IFT25 and IFT27 forming a macromolecular complex. Picture: Esben Lorentzen / Copyright: MPI of Biochemistry

They are situated at the surface of eukaryotic cells and only five to ten micrometers (0.0005 to 0.001 centimeters) long: the cilia. As inconspicuous as these hair-like structures are at first sight, as important are the tasks they fulfill in the body. By distributing specific messenger substances during the development of the embryo, the cilia ensure the correct arrangement of the internal organs. Mistakes in ciliary function can thus result in situs inversus, a condition where the left/right arrangement of the inner organs in the body is reversed. Moreover, motile cilia give the sperm cells mobility and move the egg cells from the ovaries to the uterus along the fallopian tube. Functional disruptions can lead to infertility for men or to a dangerous pregnancy outside the uterus for women. The sensory cilium serves as the antennae of the cell by transmitting signals from the environment and, in doing so, permit different sensory perceptions. These sensory cilia are for example found on photoreceptor cells of the eye and on olfactory neurons. Damage to these types of cilia can thus lead to blindness or the loss of smell.

Although cilia fulfill various tasks, they all have a similar structure: Certain molecules that are essential for the buildup and the preservation of the functioning cilia are transported along a bundle of fibers in the interior of the cilium. Disruption of this transport system, which scientists call intraflagellar transport (IFT), can lead to errors during the assembly of the cilia and thus cause diseases with mental and physical disorders.

Even though the importance of IFT and the cilium to human health has been known for a long time, a structural and mechanistic understanding of IFT has been completely missing. Scientists from the research group of Esben Lorentzen studying “Structural Biology of Cilia” at the MPIB, now succeeded in resolving the structure of a key part of the IFT complex at the molecular level: With the aid of X-ray crystallography, they were able to map this part of the IFT complex in 3D and thus could analyze its structure and functional mechanisms.

“The part of the IFT complex mapped in our study plays an essential role for the regulation of the IFT process. Hence, our findings provide a first step to decipher and understand the structure and the underlying mechanisms of the whole IFT complex”, so says Sagar Bhogaraju, the PhD student at the MPIB who carried out the experiments. In turn, a better understanding of the transport system in the cilium could help to uncover the causes for disruptions and to prevent errors, say the scientists. In this way diseases which occur as a consequence of damaged cilia could potentially be inhibited one day. [UD]

Original Publication:
Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. and Lorentzen, E. (2011), Crystal Structure of the Intraflagellar Transport Complex 25/27, EMBO Journal, May 19, 2011.
Contact:
Dr. Esben Lorentzen
Structural Biology of Cilia
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/rg/lorentzen/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>