Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hairpin turn: Micro-RNA plays role in wood formation

11.06.2013
For more than a decade, scientists have suspected that hairpin-shaped chains of micro-RNA regulate wood formation inside plant cells. Now, scientists at NC State University have found the first example and mapped out key relationships that control the process.

The research, published online in Proceedings of the National Academy of Sciences the week of June 10, describes how one strand of micro-RNA reduced by more than 20 percent the formation of lignin, which gives wood its strength.

Understanding how to reduce lignin at the cellular level could lead to advances in paper and biofuels production, where harsh chemicals and costly treatments are used to remove lignin from wood.

"This is the first time that we have proof that a micro-RNA controls lignin biosynthesis," said Dr. Vincent Chiang, who co-directs NC State's Forest Biotechnology Group with Dr. Ron Sederoff, a member of the National Academy of Sciences.

Through five years of "very detailed analysis," the team confirmed that micro-RNA acts as a master regulator in reducing formation of lignin in transgenic black cottonwood, Chiang said.

Researchers used mathematical analysis to map out a three-layered network of relationships among key transcription factors and the micro-RNA that controls expression of laccase genes as well as other peroxidase genes involved in wood formation.

The network illustrates the hierarchy of gene control and narrows the transcription factors of interest from approximately 2,000 to 20. "That's still a career's worth of research," Chiang said.

Lead authors are Dr. Shanfa Lu, former NC State postdoctoral scientist and now professor with the Chinese Academy of Medical Sciences and Peking Union Medical College, and Dr. Quanzi Li, senior research associate with NC State's Forest Biotechnology Group. Dr. Hairong Wei, professor of systems and computational biology at Michigan Technological University, created a unique algorithm for mapping the genetic regulatory network.

The research was funded with a National Science Foundation Plant Genome Research Program Grant (DBI-0922391). -ford-

Note to editors:

An abstract of the paper follows.

"Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa"

Published:

Online the week of June 10 in Proceedings of the National Academy of Sciences

Authors:

Shanfa Lu, Quanzi Li, Hairong Wei, Mao-Ju Chang, Sermsawat Tunlaya-Anukit, Hoon Kim, Jie Liu, Jingyuan Song, Ying-Hsuan Sun, Lichai Yuan, Ting-Feng Yeh, Ilona Peszlen, John Ralph, Ronald R. Sederoff and Vincent L. Chiang

Co-lead author Li, Tunlaya-Anukit, Liu, Sederoff and Chiang are members of the Forest Biotechnology Group at North Carolina State University. Co-lead author Lu, a former postdoctoral researcher at NC State, Song and Yuan are with the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College. Wei is with Michigan Technological University. Chang and Yeh are with National Taiwan University. Sun is with National Chung Hsing University in Taiwan. Peszlen is with the Department of Forest Biomaterials, NC State. Kim and Ralph are with the University of Wisconsin, Madison.

Abstract: Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ~40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-mi397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.

Vincent Chiang | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>