Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hacking the programs of cancer stem cells

26.01.2016

All tumor cells are the offspring of a single, aberrant cell, but they are not all alike. Only a few retain the capacity of the original cell to create an entire tumor. Such cancer stem cells can migrate to other tissues and become fatal metastases. To fully cure a patient's cancer, it is crucial to find and eliminate all of these cells because any that escape can regenerate the tumor and trigger its spread through the body.

Liang Fang and his colleagues in Walter Birchmeier's group at the Max Delbrück Center for Molecular Medicine (MDC), working with colleagues on the Berlin-Buch campus, have now discovered a molecule that interrupts biochemical signals essential for the survival of a certain type of cancer stem cell. The work is published ahead of print in the online edition of Cancer Research.


A new inhibitor suppresses tumor growth and cancer stem cells. The image on the left shows beta catenin (red) in cell nuclei indicating that these are cancer stem cells. The image on the right shows that the new substance successfully removed beta catenin from the nuclei.

Picture by Liang Fang for the MDC

In their study Liang and his colleagues focused on a biochemical network within cells called the Wnt signaling pathway, which Birchmeier's lab has studied for many years. One of their discoveries has been that certain types of cancer stem cells require continual stimulation via this pathway to survive and maintain the properties that make them so dangerous.

A component of the network called beta-catenin plays an essential role in transmitting Wnt signals to genes that promote the survival and reproduction of the cancer cells. In healthy cells there is no signal from Wnt, and beta-catenin is destroyed.

"In the absence of a signal, beta-catenin is locked out of the cell nucleus," Birchmeier says. "It is linked to a complex of proteins that ultimately break it down. Normally it requires a signal to be released from this 'destruction complex,' and it travels to the cell nucleus." There beta-catenin binds to transcription factors such as the protein TCF4, and in combination the molecules activate specific target genes. In cancer there is no signal, but defective cellular molecules behave as if they have received one and release beta-catenin from the complex.

It might be possible, the scientists reasoned, to prevent this by interrupting the interaction between beta-catenin and TCF4 with a drug. Contacts between two proteins are normally very difficult to destabilize with the small molecules that make up drugs. Proteins usually bind over large areas of their surfaces, which means that a comparatively small obstacle won't prevent the interaction. That is the case with other beta-catenin binding partners.

But the crucial points of contact between beta-catenin and TCF4 appeared to be small "hotspots" which suggested that an inhibitor might block it. Liang Fang took the problem to the campus Screening Unit and Medicinal Chemistry group, a partnership between the MDC and FMP. The facility has high-throughput technology platforms and a "library" of tens of thousands of substances that scientists use to search for inhibitors. The screen turned up a compound they called LF3 which very strongly inhibited binding.

After showing that the compound stripped cancer stem cells of some properties essential to their survival, the lab's next step was to determine whether it would have any effect on tumors in living animals. The scientists turned to the company EPO, a campus-based spin-off of the MDC, to develop lines of mice with tumors derived from human colon cancer tissue. The company specializes in creating mouse models from individual patients' tumors, then testing the animals with a battery of known drugs in hopes of finding one that will effectively combat a specific case of cancer. In this case, all the animals developed tumors, even when injected with a relatively small number of enriched cancer cells.

The animals were then treated with LF3. "We observed a strong reduction of tumor growth," Walter Birchmeier says. "What remained seemed to be completely devoid of cancer stem cells - LF3 seemed to be powerfully triggering these cells to differentiate into benign tissue. At the same time no signaling systems other than Wnt were disturbed. All of these factors make LF3 very promising to further develop as a lead compound, aiming for therapies that target tumors whose growth and survival depend on Wnt signaling."

###

Reference: Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP, Birchmeier W. A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 2015 Dec 8. doi: canres.1519.2015.

Media Contact

Josef Zens
josef.zens@mdc-berlin.de
49-309-406-2118

http://www.mdc-berlin.de 

Josef Zens | EurekAlert!

Further reports about: MDC Molecular TCF4 beta-catenin cancer stem cells cell nucleus stem cells tumors

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>