Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hacking the programs of cancer stem cells


All tumor cells are the offspring of a single, aberrant cell, but they are not all alike. Only a few retain the capacity of the original cell to create an entire tumor. Such cancer stem cells can migrate to other tissues and become fatal metastases. To fully cure a patient's cancer, it is crucial to find and eliminate all of these cells because any that escape can regenerate the tumor and trigger its spread through the body.

Liang Fang and his colleagues in Walter Birchmeier's group at the Max Delbrück Center for Molecular Medicine (MDC), working with colleagues on the Berlin-Buch campus, have now discovered a molecule that interrupts biochemical signals essential for the survival of a certain type of cancer stem cell. The work is published ahead of print in the online edition of Cancer Research.

A new inhibitor suppresses tumor growth and cancer stem cells. The image on the left shows beta catenin (red) in cell nuclei indicating that these are cancer stem cells. The image on the right shows that the new substance successfully removed beta catenin from the nuclei.

Picture by Liang Fang for the MDC

In their study Liang and his colleagues focused on a biochemical network within cells called the Wnt signaling pathway, which Birchmeier's lab has studied for many years. One of their discoveries has been that certain types of cancer stem cells require continual stimulation via this pathway to survive and maintain the properties that make them so dangerous.

A component of the network called beta-catenin plays an essential role in transmitting Wnt signals to genes that promote the survival and reproduction of the cancer cells. In healthy cells there is no signal from Wnt, and beta-catenin is destroyed.

"In the absence of a signal, beta-catenin is locked out of the cell nucleus," Birchmeier says. "It is linked to a complex of proteins that ultimately break it down. Normally it requires a signal to be released from this 'destruction complex,' and it travels to the cell nucleus." There beta-catenin binds to transcription factors such as the protein TCF4, and in combination the molecules activate specific target genes. In cancer there is no signal, but defective cellular molecules behave as if they have received one and release beta-catenin from the complex.

It might be possible, the scientists reasoned, to prevent this by interrupting the interaction between beta-catenin and TCF4 with a drug. Contacts between two proteins are normally very difficult to destabilize with the small molecules that make up drugs. Proteins usually bind over large areas of their surfaces, which means that a comparatively small obstacle won't prevent the interaction. That is the case with other beta-catenin binding partners.

But the crucial points of contact between beta-catenin and TCF4 appeared to be small "hotspots" which suggested that an inhibitor might block it. Liang Fang took the problem to the campus Screening Unit and Medicinal Chemistry group, a partnership between the MDC and FMP. The facility has high-throughput technology platforms and a "library" of tens of thousands of substances that scientists use to search for inhibitors. The screen turned up a compound they called LF3 which very strongly inhibited binding.

After showing that the compound stripped cancer stem cells of some properties essential to their survival, the lab's next step was to determine whether it would have any effect on tumors in living animals. The scientists turned to the company EPO, a campus-based spin-off of the MDC, to develop lines of mice with tumors derived from human colon cancer tissue. The company specializes in creating mouse models from individual patients' tumors, then testing the animals with a battery of known drugs in hopes of finding one that will effectively combat a specific case of cancer. In this case, all the animals developed tumors, even when injected with a relatively small number of enriched cancer cells.

The animals were then treated with LF3. "We observed a strong reduction of tumor growth," Walter Birchmeier says. "What remained seemed to be completely devoid of cancer stem cells - LF3 seemed to be powerfully triggering these cells to differentiate into benign tissue. At the same time no signaling systems other than Wnt were disturbed. All of these factors make LF3 very promising to further develop as a lead compound, aiming for therapies that target tumors whose growth and survival depend on Wnt signaling."


Reference: Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP, Birchmeier W. A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 2015 Dec 8. doi: canres.1519.2015.

Media Contact

Josef Zens

Josef Zens | EurekAlert!

Further reports about: MDC Molecular TCF4 beta-catenin cancer stem cells cell nucleus stem cells tumors

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>