Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New H5N1 viruses: How to balance risk of escape with benefits of research?

06.03.2012
In the controversy surrounding the newly developed strains of avian H5N1 flu viruses, scientists and policy makers are struggling with one question in particular: what level of biosafety is best for studying these potentially lethal strains of influenza?

In a pair of commentaries, researchers from the Mount Sinai School of Medicine in New York and the University of Michigan argue their different views of how to safely handle H5N1 flu viruses. The commentaries will be published in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday, March 6.

This fall, the U.S. National Science Advisory Board for Biosecurity (NSABB) set off a debate when it asked the authors of two recent H5N1 research studies and the scientific journals that planned to publish them to withhold crucial details of the research in the interest of biosecurity. The researchers had taken H5N1, a virus that cannot easily transmit from human to human, and developed strains of the virus that can transmit easily between ferrets, which are a common model for human influenza.

These H5N1 strains and others like them that might be developed in the future could pose a grave threat to human life, but researchers and others argue that studying these H5N1 strains could help bolster preparedness efforts and vaccine development to help fend off a potential H5N1 pandemic. How can we balance the need to protect human life from the accidental escape of an H5N1 strain with the need to continue research that might prevent a naturally occurring outbreak? Which biosafety level (BSL) is right for the H5N1 virus?

In the commentaries appearing in mBio, two experts offer opposing views of the appropriate level of security for dealing with H5N1 viruses. The authors agree that, with a reported case fatality rate that could be as high as 50% or more, H5N1 could create a pandemic of disastrous proportions, but they differ in their opinions of how to strike a balance between biosecurity and potentially life-saving research.

"The existence of mammalian transmissible H5N1 immediately poses the question of whether the current biosafety level of containment is adequate," writes mBio® Editor in Chief Arturo Casadevall in an accompanying editorial. "It is important to understand that the choice of BSL level has profound implications for society."

Under current U.S. guidelines H5N1 is classified as a select agent and must be worked with under BSL-3 with enhancements. The BSL-3 designation is given to pathogens that can be transmitted through the air and can cause serious or fatal disease but for which treatment exists. Most facilities in the United States with infectious disease research programs have BSL-3 laboratories. In addition, many hospitals have areas that can be operated at this level; these areas are used for isolating patients with highly contagious diseases. In contrast, BSL-4 is reserved for pathogens for which there is no known treatment and BSL-4 laboratory requirements are such that there are only four working BSL-4 laboratories in the United States.

Adolfo García-Sastre of the Mount Sinai School of Medicine argues that the H5N1 viruses in question may well be less pathogenic than they were before passage through ferrets, but they could still be quite dangerous, so preventing human exposure is crucial. However, he says, the ultimate level of biosecurity, BSL-4, is excessive in this case and would stifle the pace of discovery. There are both therapeutics and vaccines available for H5N1, says García-Sastre, so he advocates for conducting the research in enhanced BSL-3 facilities, which he says offer the necessary security measures, including interlocked rooms with negative pressure, HEPA-filtered air circulation, and appropriate decontamination and/or sterilization practices for material leaving the facility.

Michael Imperiale and Michael Hanna of the University of Michigan, on the other hand, make their case that the H5N1 viruses merit BSL-4 containment. Although H5N1 that cannot be transmitted from human to human would normally be handled in a BSL-3 facility, researchers changed the virus' biosafety profile when they enhanced its ability to transmit between mammals. According to Imperiale and Hanna, the vaccine for H5N1 is not widely available, and drug resistance and a slow distribution system for antiviral drugs mean a small outbreak could never be contained.

Since the controversy began in December, H5N1 viruses and flu research continue to be the source of much debate. mBio® and the American Society for Microbiology present these commentaries as a means of fostering a discussion and eventually achieving consensus about H5N1 biosecurity that is based on the scientific facts surrounding the subject.

PLEASE NOTE: The articles will be available to the general public on the mBio® website after 10:00 a.m. on March 6, 2012.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>