Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New H5N1 viruses: How to balance risk of escape with benefits of research?

06.03.2012
In the controversy surrounding the newly developed strains of avian H5N1 flu viruses, scientists and policy makers are struggling with one question in particular: what level of biosafety is best for studying these potentially lethal strains of influenza?

In a pair of commentaries, researchers from the Mount Sinai School of Medicine in New York and the University of Michigan argue their different views of how to safely handle H5N1 flu viruses. The commentaries will be published in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday, March 6.

This fall, the U.S. National Science Advisory Board for Biosecurity (NSABB) set off a debate when it asked the authors of two recent H5N1 research studies and the scientific journals that planned to publish them to withhold crucial details of the research in the interest of biosecurity. The researchers had taken H5N1, a virus that cannot easily transmit from human to human, and developed strains of the virus that can transmit easily between ferrets, which are a common model for human influenza.

These H5N1 strains and others like them that might be developed in the future could pose a grave threat to human life, but researchers and others argue that studying these H5N1 strains could help bolster preparedness efforts and vaccine development to help fend off a potential H5N1 pandemic. How can we balance the need to protect human life from the accidental escape of an H5N1 strain with the need to continue research that might prevent a naturally occurring outbreak? Which biosafety level (BSL) is right for the H5N1 virus?

In the commentaries appearing in mBio, two experts offer opposing views of the appropriate level of security for dealing with H5N1 viruses. The authors agree that, with a reported case fatality rate that could be as high as 50% or more, H5N1 could create a pandemic of disastrous proportions, but they differ in their opinions of how to strike a balance between biosecurity and potentially life-saving research.

"The existence of mammalian transmissible H5N1 immediately poses the question of whether the current biosafety level of containment is adequate," writes mBio® Editor in Chief Arturo Casadevall in an accompanying editorial. "It is important to understand that the choice of BSL level has profound implications for society."

Under current U.S. guidelines H5N1 is classified as a select agent and must be worked with under BSL-3 with enhancements. The BSL-3 designation is given to pathogens that can be transmitted through the air and can cause serious or fatal disease but for which treatment exists. Most facilities in the United States with infectious disease research programs have BSL-3 laboratories. In addition, many hospitals have areas that can be operated at this level; these areas are used for isolating patients with highly contagious diseases. In contrast, BSL-4 is reserved for pathogens for which there is no known treatment and BSL-4 laboratory requirements are such that there are only four working BSL-4 laboratories in the United States.

Adolfo García-Sastre of the Mount Sinai School of Medicine argues that the H5N1 viruses in question may well be less pathogenic than they were before passage through ferrets, but they could still be quite dangerous, so preventing human exposure is crucial. However, he says, the ultimate level of biosecurity, BSL-4, is excessive in this case and would stifle the pace of discovery. There are both therapeutics and vaccines available for H5N1, says García-Sastre, so he advocates for conducting the research in enhanced BSL-3 facilities, which he says offer the necessary security measures, including interlocked rooms with negative pressure, HEPA-filtered air circulation, and appropriate decontamination and/or sterilization practices for material leaving the facility.

Michael Imperiale and Michael Hanna of the University of Michigan, on the other hand, make their case that the H5N1 viruses merit BSL-4 containment. Although H5N1 that cannot be transmitted from human to human would normally be handled in a BSL-3 facility, researchers changed the virus' biosafety profile when they enhanced its ability to transmit between mammals. According to Imperiale and Hanna, the vaccine for H5N1 is not widely available, and drug resistance and a slow distribution system for antiviral drugs mean a small outbreak could never be contained.

Since the controversy began in December, H5N1 viruses and flu research continue to be the source of much debate. mBio® and the American Society for Microbiology present these commentaries as a means of fostering a discussion and eventually achieving consensus about H5N1 biosecurity that is based on the scientific facts surrounding the subject.

PLEASE NOTE: The articles will be available to the general public on the mBio® website after 10:00 a.m. on March 6, 2012.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>