Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gypsy moths wreak havoc, but their own enemies are not far behind

11.06.2010
If you live in a section of the country where gypsy moths are a relatively new menace, have no fear, help is not far behind.

Cornell University entomologist Ann Hajek told a national conference earlier this month that when the gypsy moth – whose caterpillars have defoliated entire forests – started spreading westward more than 100 years ago from New England to Wisconsin, its fungal and viral pathogens followed close behind.

"We were pretty surprised," Hajek says. "No one knew how long it took the pathogens to chase their hosts."

The findings are important because gypsy moth populations can develop unpredictably and erratically, with lots of caterpillars eating all the leaves off of most of the trees, Hajek told attendees at the Cornell-hosted Eighth Annual Ecology and Evolution of Infectious Disease workshop and conference, June 3-4, in Ithaca. Land managers, she says, can rest assured that pathogens will follow the migrating moths, providing natural controls.

Gypsy moths are slowly moving west across the United States after being introduced to Massachusetts from Europe in 1869. They migrate slowly because the females do not fly. By tracking the edges of the migration, where population densities are low, researchers have an opportunity to investigate how long it takes their viral and fungal pathogens to catch up, Hajek says.

The fungal pathogen, entomophaga maimaiga, was first reported in 1989 and attacks the caterpillars. The virus, lymantria dispar nucleopolyhedrovirus, which was accidentally introduced near Boston in 1906, also infects gypsy moth caterpillars.

Hajek and colleagues studied "leading edge" populations of moths and pathogens in central Wisconsin in 2005-07. They set pheromone traps west of the migrating population and then traveled east to lay traps to catch the flying males. Once their traps caught more than 74 moths each in single year, there was a more than 50 percent chance of finding the fungus in that area in the following year. When more than 252 moths were trapped in a year, there was more than 50 percent chance of finding the virus the next year.

"Our data show that the fungus spreads into lower density leading edge populations sooner than the virus, but the virus eventually colonizes the populations, too," Hajek says.

Fungal spores actively shoot out of the moth cadavers and disperse in the environment, thereby spreading quickly. The virus spreads from one caterpillar to another, and possibly via parasitoid flies and predators, which is a slower process, she said.

Hajek has also discovered that the efforts of land managers to release the pathogens along the leading edges of spreading moth populations are ineffective and unnecessary. Hajek and colleagues found no association between the release of pathogens nearby and presence of the pathogens among the moths.

"These results suggest that the pathogens are dispersing on their own and land managers don't need to release them in leading edge gypsy moth populations, because they'll get there on their own anyway," said Hajek.

The conference was sponsored by the Cornell University Center for a Sustainable Future, Institute for Computational Sustainability, National Science Foundation and Cornell.

John Carberry | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>