Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gypsy moths wreak havoc, but their own enemies are not far behind

If you live in a section of the country where gypsy moths are a relatively new menace, have no fear, help is not far behind.

Cornell University entomologist Ann Hajek told a national conference earlier this month that when the gypsy moth – whose caterpillars have defoliated entire forests – started spreading westward more than 100 years ago from New England to Wisconsin, its fungal and viral pathogens followed close behind.

"We were pretty surprised," Hajek says. "No one knew how long it took the pathogens to chase their hosts."

The findings are important because gypsy moth populations can develop unpredictably and erratically, with lots of caterpillars eating all the leaves off of most of the trees, Hajek told attendees at the Cornell-hosted Eighth Annual Ecology and Evolution of Infectious Disease workshop and conference, June 3-4, in Ithaca. Land managers, she says, can rest assured that pathogens will follow the migrating moths, providing natural controls.

Gypsy moths are slowly moving west across the United States after being introduced to Massachusetts from Europe in 1869. They migrate slowly because the females do not fly. By tracking the edges of the migration, where population densities are low, researchers have an opportunity to investigate how long it takes their viral and fungal pathogens to catch up, Hajek says.

The fungal pathogen, entomophaga maimaiga, was first reported in 1989 and attacks the caterpillars. The virus, lymantria dispar nucleopolyhedrovirus, which was accidentally introduced near Boston in 1906, also infects gypsy moth caterpillars.

Hajek and colleagues studied "leading edge" populations of moths and pathogens in central Wisconsin in 2005-07. They set pheromone traps west of the migrating population and then traveled east to lay traps to catch the flying males. Once their traps caught more than 74 moths each in single year, there was a more than 50 percent chance of finding the fungus in that area in the following year. When more than 252 moths were trapped in a year, there was more than 50 percent chance of finding the virus the next year.

"Our data show that the fungus spreads into lower density leading edge populations sooner than the virus, but the virus eventually colonizes the populations, too," Hajek says.

Fungal spores actively shoot out of the moth cadavers and disperse in the environment, thereby spreading quickly. The virus spreads from one caterpillar to another, and possibly via parasitoid flies and predators, which is a slower process, she said.

Hajek has also discovered that the efforts of land managers to release the pathogens along the leading edges of spreading moth populations are ineffective and unnecessary. Hajek and colleagues found no association between the release of pathogens nearby and presence of the pathogens among the moths.

"These results suggest that the pathogens are dispersing on their own and land managers don't need to release them in leading edge gypsy moth populations, because they'll get there on their own anyway," said Hajek.

The conference was sponsored by the Cornell University Center for a Sustainable Future, Institute for Computational Sustainability, National Science Foundation and Cornell.

John Carberry | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>