Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gymnastic training improves bone health in girls

05.05.2010
According to a new study accepted for publication in The Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM), long-term elite rhythmic gymnastics exerts positive effects on volumetric bone density and bone geometry in adolescent girls.

"Previous studies of adolescents have found an association between weight-bearing exercise and increased bone density and bone strength," said Symeon Tournis, MD, of the University of Athens in Greece and lead author of the study.

"Our findings show that training in rhythmic gymnastics significantly improves bone health in adolescent girls. Given that osteoporosis traits start in childhood, it is possible to speculate that if girls maintain their gymnastic training beyond adolescence, even if their training is less intensive, they may have a reduced risk of bone fracture later in life."

In this study, researchers evaluated the bone health of 49 girls between the ages of 9 and 13 years. Twenty-six of the girls were elite rhythmic gymnasts who had trained for at least two years, and 23 girls had only physical-education related activity. Researchers measured volumetric bone density, bone mineral content and cortical thickness (the outer shell of the bone) in each girl and found that girls who had undergone intensive rhythmic gymnastic training had increased cortical thickness and bone strength.

"There are a small number of studies that have evaluated the effect of weight-bearing exercise on bone mineral density and bone geometry," said Tournis. "However, to our knowledge, this is the first study to examine the effect of long-term elite rhythmic gymnastics on bone geometry using peripheral quantitative computed tomography (pQCT) along with detailed evaluation of bone turnover markers."

The pQCT measures volumetric bone mineral density and cross sectional bone dimensions at peripheral skeletal sites such as the radius and tibia. Another common method used to measure bone density, dual energy X-ray absorptiometry (DXA) is affected by skeletal size, and changes in density may be obscured by changes in skeletal size. The pQCT measures volumetric bone density independent of skeletal size.

"The long-term significance of the skeletal benefits gained by intensive exercise remains uncertain," said Tournis. "Some studies have shown a decline in bone mineral density after the cessation of training while a recent study has found increases in bone mineral content and cortical thickness in female gymnasts six years after retirement."

Other researchers working on the study include I. Paspati, P. Raptou, V. Zouvelou, A. Galanos, G.P. Lyritis and N. Pappaioannou of the University of Athens in Greece; and E. Michopoulou, I.G. Fatouros, M. Michalopoulou, D. Leontsini, A. Avlonitou, M. Krekoukia, N. Aggelousis, A. Kambas, I. Douroudos and K. Taxildaris of the Democritus University of Thrace in Komotini, Greece.

The article, "Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls," will appear in the June 2010 issue of JCEM.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 14,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied, and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at www.endo-society.org.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>