Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GW researchers reveal 18 novel subtype-dependent genetic variants for autism spectrum disorders and ...

28.04.2011
... identify potential genetic markers for diagnostic screening

By dividing individuals with autism spectrum disorders (ASD) into four subtypes according to similarity of symptoms and reanalyzing existing genome-wide genetic data on these individuals vs. controls, researchers at the George Washington University School of Medicine and Health Sciences have identified 18 novel and highly significant genetic markers for ASD.

In addition, ten of the variants were associated with more than one ASD subtype, providing partial replication of these genetic markers. This study thus identifies candidate genes for ASD and potential subtype-dependent genetic markers for diagnostic screening. These findings, published in the April 27 edition of the journal PLoS ONE, demonstrate the increased statistical power to identify significant genetic variants when the heterogeneity of the samples tested is reduced by subtyping and further begin to associate genotype with phenotype.

"By working to tease apart the heterogeneity associated with varying severity of autistic symptoms exhibited by individuals with ASD and examining the resulting subtypes of ASD, we believe that we will continue to make strides in figuring out the genetic contributions to autism," said Valerie Hu, Ph.D., professor of Biochemistry and Molecular Biology at GW's School of Medicine and Health Sciences. "The goal of our research is to identify SNPs associated with a subtype of ASD that rise above the 'noise' of the hundreds of thousands of other SNPs when compared against controls, with the hope that we can identify genetic biomarkers for these disorders as well as clues to the biology of autism."

The researchers first identified genetic variants or single nucleotide polymorphisms (SNPs) that are associated with the degree of severity of various different autistic traits, and then they performed case-control genetic association analyses using these variants and subgroups of autistic individuals who share similar symptoms. This helped the researchers to identify the 18 genetic markers that are associated with four subtypes of ASD, ten of which were associated with more than one ASD subtype. They then examined the minor allele frequencies of the shared SNPs in the respective ASD subtypes and found that the odds ratio is different for each shared SNP, further suggesting genetic heterogeneity among the subtypes. The study also found that all of the novel variants were located in nonexonic DNA regions that do not code for protein and further identified two SNPs that are associated with differentially expressed genes from an earlier study by Dr. Hu's laboratory, suggesting a possible functional relationship between the SNPs and gene expression levels. Based on these findings, the researchers hypothesized that perhaps the newly identified genetic variants are affecting gene regulatory processes, rather than causing a change in protein structure.

Citation: Hu VW, Addington A, Hyman A (2011) Novel Autism Subtype-Dependent Genetic Variants Are Revealed by Quantitative Trait and Subphenotype Association Analyses of Published GWAS Data. PLoS ONE 6(4): e19067. doi:10.1371/journal.pone.0019067

PLEASE LINK TO THE SCIENTIFIC ARTICLE IN ONLINE VERSIONS OF YOUR REPORT (URL goes live after the embargo ends): http://dx.plos.org/10.1371/journal.pone.0019067

About The George Washington University Medical Center

The George Washington University Medical Center is an internationally recognized interdisciplinary academic health center that has conducted scientific research and provided high-quality medical care in the Washington, D.C., metropolitan area since 1824. For more information about the GW Medical Center, visit: www.gwumc.edu

www.gwumc.edu | EurekAlert!
Further information:
http://www.gwumc.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>