Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the gut manages bacteria

20.10.2008
A RIKEN-led international research group has puzzled out details of the intricate mechanism by which the immune system in the gut can respond rapidly to changes in its bacterial environment. Eventually, the work could lead to better treatment and control of gut infections and inflammatory bowel diseases.

A previously unknown mechanism enables the immune system in the gut to respond rapidly to changes in bacteria

A RIKEN-led international research group has puzzled out details of the intricate mechanism by which the immune system in the gut can respond rapidly to changes in its bacterial environment. Eventually, the work could lead to better treatment and control of gut infections and inflammatory bowel diseases.

The gut is in direct contact with the external environment and houses at least 400 different species of bacteria in vast numbers. It maintains a finely tuned immune system built around immunoglobulin A (IgA) antibodies produced by B cells to protect the body against pathogens and manage the growth of benign organisms. Previous research by other researchers unraveled a mechanism whereby T cells control the formation of these IgA-producing B cells in organized multi-cellular structures called Peyer’s patches, which develop in the embryo. But such a system could take weeks to respond to invasive bacteria.

The latest work reveals a second mechanism that operates without intervention of T cells, and develops only after colonization of the intestine with bacteria, hence after birth. It involves another set of cellular structures called isolated lymphoid follicles (ILFs).

In a recent paper in the journal Immunity (1), the researchers, led by Sidonia Fagarasan of the RIKEN Center for Allergy and Immunology in Yokohama, detail how these ILFs piece together, providing an understanding of the newly identified mechanism. They used strains of mice bred to lack compounds significant to the development of ILFs.

The researchers noticed that the numbers and size of ILFs in the gut paralleled the level of bacteria, increasing with bacterial colonization and decreasing with the use of antibiotics. Recently, they also discovered cells in adults similar to embryonic lymphoid tissue-inducer (LTi) cells essential to the development of immune centers, such as lymph nodes and Peyer’s patches.

Fagarasan and her colleagues showed that these adult LTi cells could interact with underlying stromal cells in the gut to recruit the cellular components of ILFs—B cells and antigen-presenting dendritic cells (Fig. 1). But the adult LTi cells only did this effectively in the presence of bacterial cells which stimulate an immune response, partly through the production of tumor necrosis factor. So ILFs are only formed when bacteria are present. The researchers also demonstrated that functioning ILFs could transform typical B cells that make immunoglobulin M into those that produce IgA.

“If we can understand more about these LTi cells and their interactions,” says Fagarasan, “it could provide us with the potential to manipulate the gut immune system.”

1. Tsuji, M., Suzuki, K., Kitamura, H., Maruya, M., Kinoshita, K., Ivanov, I.I., Itoh, K., Littman, D.R. & Fagarasan, S. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent Immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Mucosal Immunity

Saeko Okada | researchsea
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/555/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>