Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the gut manages bacteria

20.10.2008
A RIKEN-led international research group has puzzled out details of the intricate mechanism by which the immune system in the gut can respond rapidly to changes in its bacterial environment. Eventually, the work could lead to better treatment and control of gut infections and inflammatory bowel diseases.

A previously unknown mechanism enables the immune system in the gut to respond rapidly to changes in bacteria

A RIKEN-led international research group has puzzled out details of the intricate mechanism by which the immune system in the gut can respond rapidly to changes in its bacterial environment. Eventually, the work could lead to better treatment and control of gut infections and inflammatory bowel diseases.

The gut is in direct contact with the external environment and houses at least 400 different species of bacteria in vast numbers. It maintains a finely tuned immune system built around immunoglobulin A (IgA) antibodies produced by B cells to protect the body against pathogens and manage the growth of benign organisms. Previous research by other researchers unraveled a mechanism whereby T cells control the formation of these IgA-producing B cells in organized multi-cellular structures called Peyer’s patches, which develop in the embryo. But such a system could take weeks to respond to invasive bacteria.

The latest work reveals a second mechanism that operates without intervention of T cells, and develops only after colonization of the intestine with bacteria, hence after birth. It involves another set of cellular structures called isolated lymphoid follicles (ILFs).

In a recent paper in the journal Immunity (1), the researchers, led by Sidonia Fagarasan of the RIKEN Center for Allergy and Immunology in Yokohama, detail how these ILFs piece together, providing an understanding of the newly identified mechanism. They used strains of mice bred to lack compounds significant to the development of ILFs.

The researchers noticed that the numbers and size of ILFs in the gut paralleled the level of bacteria, increasing with bacterial colonization and decreasing with the use of antibiotics. Recently, they also discovered cells in adults similar to embryonic lymphoid tissue-inducer (LTi) cells essential to the development of immune centers, such as lymph nodes and Peyer’s patches.

Fagarasan and her colleagues showed that these adult LTi cells could interact with underlying stromal cells in the gut to recruit the cellular components of ILFs—B cells and antigen-presenting dendritic cells (Fig. 1). But the adult LTi cells only did this effectively in the presence of bacterial cells which stimulate an immune response, partly through the production of tumor necrosis factor. So ILFs are only formed when bacteria are present. The researchers also demonstrated that functioning ILFs could transform typical B cells that make immunoglobulin M into those that produce IgA.

“If we can understand more about these LTi cells and their interactions,” says Fagarasan, “it could provide us with the potential to manipulate the gut immune system.”

1. Tsuji, M., Suzuki, K., Kitamura, H., Maruya, M., Kinoshita, K., Ivanov, I.I., Itoh, K., Littman, D.R. & Fagarasan, S. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent Immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Mucosal Immunity

Saeko Okada | researchsea
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/555/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>