Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gut Bacterium Discovered in Termite's Digestion of Wood

27.09.2013
Caltech researchers find new species of microbe responsible for acetogenesis, an important process in termite nutrition.

When termites munch on wood, the small bits are delivered to feed a community of unique microbes living in their guts, and in a complex process involving multiple steps, these microbes turn the hard, fibrous material into a nutritious meal for the termite host.

One key step uses hydrogen to convert carbon dioxide into organic carbon—a process called acetogenesis—but little is known about which gut bacteria play specific roles in the process. Utilizing a variety of experimental techniques, researchers from the California Institute of Technology (Caltech) have now discovered a previously unidentified bacterium—living on the surface of a larger microorganism in the termite gut—that may be responsible for most gut acetogenesis.

"In the termite gut, you have several hundred different species of microbes that live within a millimeter of one another. We know certain microbes are present in the gut, and we know microbes are responsible for certain functions, but until now, we didn't have a good way of knowing which microbes are doing what," says Jared Leadbetter, professor of environmental microbiology at Caltech, in whose laboratory much of the research was performed. He is also an author of a paper about the work published the week of September 16 in the online issue of the Proceedings of the National Academy of Sciences (PNAS).

Acetogenesis is the production of acetate (a source of nutrition for termites) from the carbon dioxide and hydrogen generated by gut protozoa as they break down decaying wood. In their study of "who is doing what and where," Leadbetter and his colleagues searched the entire pool of termite gut microbes to identify specific genes from organisms responsible for acetogenesis.

The researchers began by sifting through the microbes' RNA—genetic information that can provide a snapshot of the genes active at a certain point in time. Using RNA from the total pool of termite gut microbes, they searched for actively transcribed formate dehydrogenase (FDH) genes, known to encode a protein necessary for acetogenesis. Next, using a method called multiplex microfluidic digital polymerase chain reaction (digital PCR), the researchers sequestered the previously unstudied individual microbes into tiny compartments to identify the actual microbial species carrying each of the FDH genes. Some of the FDH genes were found in types of bacteria known as spirochetes—a previously predicted source of acetogenesis. Yet it appeared that these spirochetes alone could not account for all of the acetate produced in the termite gut.

Initially, the Caltech researchers were unable to identify the microorganism expressing the single most active FDH gene in the gut. However, the first authors on the study, Adam Rosenthal, a postdoctoral scholar in biology at Caltech, and Xinning Zhang (PhD '10, Environmental Science and Engineering), noticed that this gene was more abundant in the portion of the gut extract containing wood chunks and larger microbes, like protozoans. After analyzing the chunkier gut extract, they discovered that the single most active FDH gene was encoded by a previously unstudied species from a group of microbes known as the deltaproteobacteria. This was the first evidence that a substantial amount of acetate in the gut may be produced by a non-spirochete.

Because the genes from this deltaproteobacterium were found in the chunky particulate matter of the termite gut, the researchers thought that perhaps the newly identified microbe attaches to the surface of one of the chunks. To test this hypothesis, the researchers used a color-coded visualization method called hybridization chain reaction-fluorescent in situ hybridization, or HCR-FISH.

The technique—developed in the laboratory of Niles Pierce, professor of applied and computational mathematics and bioengineering at Caltech, and a coauthor on the PNAS study—allowed the researchers to simultaneously "paint" cells expressing both the active FDH gene and a gene identifying the deltoproteobacterium with different fluorescent colors simultaneously. "The microfluidics experiment suggested that the two colors should be expressed in the same location and in the same tiny cell," Leadbetter says. And, indeed, they were. "Through this approach, we were able to actually see where the new deltaproteobacterium resided. As it turns out, the cells live on the surface of a very particular hydrogen-producing protozoan."

This association between the two organisms makes sense based on what is known about the complex food web of the termite gut, Leadbetter says. "Here you have a large eukaryotic single cell—a protozoan—which is making hydrogen as it degrades wood, and you have these much smaller hydrogen-consuming deltaproteobacteria attached to its surface," he says. "So, this new acetogenic bacterium is snuggled up to its source of hydrogen just as close as it can get."

This intimate relationship, Leadbetter says, might never have been discovered relying on phylogenetic inference—the standard method for matching a function to a specific organism. "Using phylogenetic inference, we say, 'We know a lot about this hypothetical organism's relatives, so without ever seeing the organism, we're going to make guesses about who it is related to," he says. "But with the techniques in this study, we found that our initial prediction was wrong. Importantly, we have been able to determine the specific organism responsible and a location of the mystery organism, both of which appear to be extremely important in the consumption of hydrogen and turning it into a product the insect can use." These results not only identify a new source for acetogenesis in the termite gut—they also reveal the limitations of making predictions based exclusively on phylogenetic relationships.

Other Caltech coauthors on the paper titled "Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy," are graduate student Kaitlyn S. Lucey (environmental science and engineering), Elizabeth A. Ottesen (PhD '08, biology), graduate student Vikas Trivedi (bioengineering), and research scientist Harry M. T. Choi (PhD '10, bioengineering). This work was funded by the U.S. Department of Energy, the National Science Foundation, the National Institutes of Health, the Programmable Molecular Technology Center within the Beckman Institute at Caltech, a Donna and Benjamin M. Rosen Center Bioengineering scholarship, and the Center for Environmental Microbial Interactions at Caltech.

Written by Jessica Stoller-Conrad

Contact:
Deborah Williams-Hedges
(626) 395-3227
mr@caltech.edu

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu/content/new-gut-bacterium-discovered-termites-digestion-wood

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>