Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GUMC researchers find gene function 'lost' in melanoma and glioblastoma

16.12.2008
Researchers at Georgetown University Medical Center have found a gene they say is inactivated in two aggressive cancers – malignant melanoma, a form of skin cancer, and glioblastoma multiforme, a lethal brain tumor.

They add that because this gene, known as PTPRD, has recently been found to be inactivated in several other cancers as well, their discovery suggests that PTPRD may play a tumor suppressor role in a wide variety of different cancers.

The findings are published in the December 15 issue of Cancer Research.

"Over the past decade several dozen tumor suppressor genes have been identified, but only a minority of them is important in causing many different tumor types. PTPRD seems to be one of these broad spectrum tumor suppressor genes," says the study's lead investigator, Todd Waldman, MD, PhD, an associate professor of oncology at Georgetown's Lombardi Comprehensive Cancer Center.

If the hypothesis is true – and Waldman and his team are now investigating loss of PTPRD in a number of additional cancers – then it may be possible to design a therapy that has wide applicability in oncology, he says.

"Most targeted cancer drugs today work by inhibiting gene products that are overactive in cancer cells. In this case, it is loss of the PTPRD gene that leads to cancer," Waldman says. "Therefore, we are trying to discover the molecules that PTPRD's protein controls, and then we plan to target these downstream molecules with a novel agent."

Waldman found that when the researchers restored production of the gene's protein in cancer cells that harbored PTPRD deletions or mutations, these tumors stopped growing and initiated a program of cell suicide.

The researchers also discovered PTPRD mutations in both the blood and in tumors of a patient with multiple different kinds of cancers. "This suggests that the gene could be responsible for an inherited predisposition to cancer," Waldman says

PTPRD produces a receptor protein tyrosine phosphatase that bisects the outer membrane of a cell. The part that protrudes outside the cell body is thought to be involved in helping cells stick to each other to form a tissue as well as in cell-to-cell communication. The part that juts into the cell is an enzyme that removes phosphates from other proteins – in other words, it changes the activity of proteins either by activating or deactivating them, Waldman says.

"In the absence of PTPRD, there are as yet unknown proteins floating around inside the cell with more phosphate residues than they should have, and it is a well known fact that the presence of these residues activates cellular growth pathways," he says. But it is not yet known which specific proteins PTPRD regulates, Waldman says.

Deletions of PTPRD in human cancer cells were first discovered in 2005, and since then, deletions or mutations of the gene have been discovered in several cancer types, including those of the colon and lung.

In this study, Waldman and his research team, which includes investigators from the National Cancer Institute, the University of Iowa and Duke University, used a laboratory technique known as copy number analysis to look for PTPRD in melanoma cell lines and in samples of human glioblastoma multiforme, the deadliest of brain cancers.

This technique uses a gene microarray that contains millions of probes that can stick to different regions of the human genome. The researchers purified DNA from tumors and then used the microarray chip to quantify genomic copy number. They found that PTPRD was deleted or mutated in 12 percent of melanoma tumors and in 14 percent of glioblastoma tumors examined. "That makes PTPRD one of the most commonly mutated genes discovered yet in melanoma," Waldman says.

"Before this study, no single tyrosine phosphatase was thought to play a generally important role as a tumor suppressor gene n multiple tumor types," Waldman says. "Now we have provided the first functional evidence that PTPRD is a tumor suppressor gene, and potentially an important one at that."

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu
http://lombardi.georgetown.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>