Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GUMC discovery highlights new direction for drug discovery

07.07.2009
Researchers did what others thought was not possible by finding a small molecule to stop 'slippery' protein from binding to another, causing Ewing's Sarcoma

In a discovery that rebuffs conventional scientific thinking, researchers at Georgetown University Medical Center (GUMC) have discovered a novel way to block the activity of the fusion protein responsible for Ewing's sarcoma, a rare cancer found in children and young adults.

In the paper published online July 5 in Nature Medicine, they report discovering and successfully testing a small molecule that keeps the fusion protein from sticking to another protein that is critical for tumor formation. The researchers say this interaction is unique – and is especially surprising since the Ewing's sarcoma fusion protein is extremely flexible, which allows it to change shape constantly.

"Most targeted small molecule cancer drugs inhibit the intrinsic activity of a single protein, but our agent stops two proteins from interacting. This has never been shown before with a cancer-causing fusion protein and represents a potentially novel medical therapy in the future," says the study's lead investigator, Jeffrey Toretsky, MD, a pediatric oncology physician and researcher at GUMC's Lombardi Comprehensive Cancer Center.

The study could provide a model upon which to design treatment for other disorders caused by the interaction between two proteins, and may be especially useful in cancers caused by translocations of genes, such as sarcomas and leukemias, the researchers say. Agents in use now that work against fusion proteins inhibit a single protein to stop intrinsic enzymatic activity; one example is Gleevec, used for chronic myelogenous leukemia (CML). The Ewing's sarcoma fusion protein, known as EWS-FLI1, lacks enzymatic activity, "and this difference is why our work is significant," Toretsky says.

In the United States, about 500 patients annually are diagnosed with the cancer, and they are treated with a combination of five different chemotherapy drugs. Between 60-70 percent of patients survive over time, but with side effects from the treatment. Few additional treatment options are available for patients whose cancer progresses, Toretsky says.

Ewing's sarcoma is caused by the exchange of DNA between two chromosomes, a process known as a translocation. The new EWS-FLI1 gene is created when the EWS gene on chromosome 22 fuses to the FLI1 gene on chromosome 11, and its product is the fusion protein responsible for cancer formation. It is a so-called disordered protein, which means it does not have a rigid structure. A number of cancer-causing proteins are disordered.

In their 15-year search for a new treatment for Ewing's sarcoma, Toretsky and his colleagues were the first to make a recombinant EWS-FLI1 fusion protein. They used it to discover that the fusion protein stuck to another protein, RNA helicase A (RHA), a molecule that forms protein complexes in order to control gene transcription. "We believe that when RHA binds to EWS-FLI1, the combination becomes more powerful at turning genes on and off," says the study's first author, Hayriye Verda Erkizan, PhD, a postdoctoral researcher in Toretsky's lab.

Then, from a library of 3,000 small molecules loaned to Georgetown from the National Cancer Institute, the researchers searched for a small molecule that would bind on to EWS-FLI1. They found one, and further discovered the same molecule, NSC635437, could stop EWS-FLI1's fusion protein from sticking to RHA.

This was a wonderful discovery, Erkizan says, because the notion long accepted among scientists is that it is not possible to block protein-protein interactions given that the surface of many of these proteins are slippery - much too flexible for a drug to bind to.

They tested the agent in laboratory cell culture, and with the help of GUMC's Drug Discovery Program, the researchers designed a stronger derivative compound they called YK-4-279. In this study, they tested YK-4-279 in two different animal models of Ewing's sarcoma and found that the agent significantly inhibited the growth of tumors. There was an 80% reduction in the growth of treated tumors compared to untreated tumors.

Toretsky says that while the agent needs to be "optimized," these results serve as a proof of principle that inhibiting protein-protein interaction can work as a novel therapeutic that will target only cancer cells.

"We may be able to use this strategy to attack proteins we thought to be impervious to manipulation," he says.

The study was funded by grants from the National Institutes of Health, Children's Cancer Foundation of Baltimore, MD, Go4theGoal Foundation, Dani's Foundation of Denver, the Liddy Shriver Sarcoma Initiative, the Amschwand Sarcoma Cancer Foundation, the Burroughs-Wellcome Clinical Scientist Award in Translational Research, and the GUMC Drug Discovery Program.

Toretsky and co-authors Milton L. Brown, Aykut Üren and Yali Kong are inventors on a patent application that has been filed by Georgetown University related to the technology described in this paper. The other authors report no related financial interests.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through Georgetown's affiliation with MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO), home to 60 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>