Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New guideline for DNA sequences could prevent erroneous data

05.11.2012
DNA sequence data is an indispensable source of research information in biology. But not all data are reliable.
Almost 10% of all fungal DNA sequences are, for example, incorrectly identified to species level. A international team of researchers, with it’s core at the University of Gothenburg, Sweden, has therefore prepared a guide to assist the scientific community in the quality control process.

A new scientific study sees the researchers putting together a number of guidelines to help other researchers to ensure a high level of quality among their newly generated DNA sequences.

Detailed studies
DNA sequences make it possible to study biological samples and environments at a level of detail that traditional tools, such as microscopes, cannot provide. It is, for example, possible to investigate what species are present in seemingly barren substrates such as soil and seawater. Such studies often reveal an astonishing and hitherto unimagined diversity, and biology has made major advances as the use of DNA-based methods has become more widespread.

Quality varies
But as with many other sources of information, DNA sequences vary in quality and reliability. Several studies have found considerable quality problems in existing DNA sequence databases.

To verify ones DNA Sequence dataset for basic quality and authenticity has thus become an important part of biological research.

“Many researchers perceive quality control as difficult,” says Henrik Nilsson at the University of Gothenburg. “There are, quite simply, no guidelines that you can hand out to new or established researchers so that everyone is using the same approach. Which is why there are major differences in how, and to what extent, quality control is carried out in the research community.”

Nilsson is the lead author of a new scientific article on DNA sequence quality which has been published in the open-access journal MycoKeys.

Cumbersome software
One complication is that the software that is available to carry out parts of the quality control is cumbersome and often requires considerable computer capacity. The research group feels that it is not appropriate to require all biologists to have access to and be able to use such complex computer systems.

This is why they have written an article describing how quality control can be carried out manually without any tools beyond an Internet browser.

A guide that will help many
The article features a number of principles and observations on DNA sequences at different quality stages. Although the guidelines focus on fungi, where DNA sequences have had a particularly significant impact as a research instrument, they are general and can be used for most genes and groups of organisms.

The guidelines relate to traditional DNA sequencing as it is used in systematics, taxonomy and ecology.

The researchers hope that it will help readers to improve their DNA sequences and so halt the trend of increasing noise in the public DNA sequence databases.

Contact:
Henrik Nilsson, researcher, Department of Biological and Environmental Sciences
Tel: +46 (0)31 786 2623, e-mail: henrik.nilsson@bioenv.gu.se

Carina Eliasson | idw
Further information:
http://www.gu.se
http://dx.doi.org/10.3897/mycokeys.4.3606

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>