Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New guideline for DNA sequences could prevent erroneous data

05.11.2012
DNA sequence data is an indispensable source of research information in biology. But not all data are reliable.
Almost 10% of all fungal DNA sequences are, for example, incorrectly identified to species level. A international team of researchers, with it’s core at the University of Gothenburg, Sweden, has therefore prepared a guide to assist the scientific community in the quality control process.

A new scientific study sees the researchers putting together a number of guidelines to help other researchers to ensure a high level of quality among their newly generated DNA sequences.

Detailed studies
DNA sequences make it possible to study biological samples and environments at a level of detail that traditional tools, such as microscopes, cannot provide. It is, for example, possible to investigate what species are present in seemingly barren substrates such as soil and seawater. Such studies often reveal an astonishing and hitherto unimagined diversity, and biology has made major advances as the use of DNA-based methods has become more widespread.

Quality varies
But as with many other sources of information, DNA sequences vary in quality and reliability. Several studies have found considerable quality problems in existing DNA sequence databases.

To verify ones DNA Sequence dataset for basic quality and authenticity has thus become an important part of biological research.

“Many researchers perceive quality control as difficult,” says Henrik Nilsson at the University of Gothenburg. “There are, quite simply, no guidelines that you can hand out to new or established researchers so that everyone is using the same approach. Which is why there are major differences in how, and to what extent, quality control is carried out in the research community.”

Nilsson is the lead author of a new scientific article on DNA sequence quality which has been published in the open-access journal MycoKeys.

Cumbersome software
One complication is that the software that is available to carry out parts of the quality control is cumbersome and often requires considerable computer capacity. The research group feels that it is not appropriate to require all biologists to have access to and be able to use such complex computer systems.

This is why they have written an article describing how quality control can be carried out manually without any tools beyond an Internet browser.

A guide that will help many
The article features a number of principles and observations on DNA sequences at different quality stages. Although the guidelines focus on fungi, where DNA sequences have had a particularly significant impact as a research instrument, they are general and can be used for most genes and groups of organisms.

The guidelines relate to traditional DNA sequencing as it is used in systematics, taxonomy and ecology.

The researchers hope that it will help readers to improve their DNA sequences and so halt the trend of increasing noise in the public DNA sequence databases.

Contact:
Henrik Nilsson, researcher, Department of Biological and Environmental Sciences
Tel: +46 (0)31 786 2623, e-mail: henrik.nilsson@bioenv.gu.se

Carina Eliasson | idw
Further information:
http://www.gu.se
http://dx.doi.org/10.3897/mycokeys.4.3606

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>