Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New guide for research on multiblock polymers emerges

27.04.2012
Thanks to advances in polymer chemistry and a wide variety of monomer constituents to choose from, the world of multiblock polymers is wide open.

These polymers can result in an astonishing array of materials, customizable to almost any specification. However, the flood of options could be overwhelming, without a theoretical framework to guide research. UC Santa Barbara scientists Glenn Fredrickson and Kris Delaney address that issue in their paper, "Multiblock Polymers: Panacea or Pandora's Box?" The paper appears in the latest edition of the journal Science.


The variety of monomers that can be used to construct multiblock polymers can yield a multitude of materials with different properties.
Credit: Peter Allen

Polymers are large molecules comprised of repeating sequences of monomers. When more than one monomer type is present and the dissimilar monomers are organized and chemically bound into "blocks," the resulting multiblock polymers can serve as the basis for a multitude of materials, to be used in applications as diverse as tennis shoes and solar cells. Since the genesis of polymer science in the 1950's, when scientists had only limited numbers of monomers, and, methods to choose from in creating multiblock polymers, the field has expanded. Scientists may now create materials using monomers from a variety of sources, from petroleum to renewable feedstocks such as sugar or cellulose.

"The Pandora's box is that you have so many monomers that you can put together and in so many block sequences," said Fredrickson, a professor of chemical engineering, explaining that the properties will vary according to sequence and by virtue of the interactions among the blocks. Because multiblock copolymers can "self-assemble" into nanometer-sized domains, these materials can exhibit remarkable combinations of properties, such as soft, strong, and elastic –– as in tennis shoe soles or skateboard wheels. For higher-tech applications, the researchers are currently partnering with the company Intel to develop multiblock polymers that will enable patterning of microelectronic devices at finer scales and lower cost.

The problem, say Fredrickson and Delaney, a project scientist in the Department of Engineering, has become the sheer number of possible combinations for these monomers. There are now so many, that choosing what multiblock polymer to make –– and what monomers to make it from –– has become an issue.

"It is a counting problem," said Fredrickson, referring to the potential for millions of different polymers that could be created with today's chemistry, a number that increases by leaps and bounds for every new block and monomer species added to the selection.

The researchers, who also include scientists from the University of Minnesota and the University of Texas, suggest an approach that addresses materials performance needs by combining predictive computer simulation methods with advanced synthetic and structural characterization tools.

"Our simulation methods for predicting the self-assembled structures of multiblock polymers are quite advanced, and we are getting better at relating those nano-structures to the properties of the material," said Fredrickson. "Multiblock polymers are extremely versatile –– there is enormous latitude of design freedom, and it's very promising in terms of developing materials with truly unique properties."

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>