Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New guide for research on multiblock polymers emerges

27.04.2012
Thanks to advances in polymer chemistry and a wide variety of monomer constituents to choose from, the world of multiblock polymers is wide open.

These polymers can result in an astonishing array of materials, customizable to almost any specification. However, the flood of options could be overwhelming, without a theoretical framework to guide research. UC Santa Barbara scientists Glenn Fredrickson and Kris Delaney address that issue in their paper, "Multiblock Polymers: Panacea or Pandora's Box?" The paper appears in the latest edition of the journal Science.


The variety of monomers that can be used to construct multiblock polymers can yield a multitude of materials with different properties.
Credit: Peter Allen

Polymers are large molecules comprised of repeating sequences of monomers. When more than one monomer type is present and the dissimilar monomers are organized and chemically bound into "blocks," the resulting multiblock polymers can serve as the basis for a multitude of materials, to be used in applications as diverse as tennis shoes and solar cells. Since the genesis of polymer science in the 1950's, when scientists had only limited numbers of monomers, and, methods to choose from in creating multiblock polymers, the field has expanded. Scientists may now create materials using monomers from a variety of sources, from petroleum to renewable feedstocks such as sugar or cellulose.

"The Pandora's box is that you have so many monomers that you can put together and in so many block sequences," said Fredrickson, a professor of chemical engineering, explaining that the properties will vary according to sequence and by virtue of the interactions among the blocks. Because multiblock copolymers can "self-assemble" into nanometer-sized domains, these materials can exhibit remarkable combinations of properties, such as soft, strong, and elastic –– as in tennis shoe soles or skateboard wheels. For higher-tech applications, the researchers are currently partnering with the company Intel to develop multiblock polymers that will enable patterning of microelectronic devices at finer scales and lower cost.

The problem, say Fredrickson and Delaney, a project scientist in the Department of Engineering, has become the sheer number of possible combinations for these monomers. There are now so many, that choosing what multiblock polymer to make –– and what monomers to make it from –– has become an issue.

"It is a counting problem," said Fredrickson, referring to the potential for millions of different polymers that could be created with today's chemistry, a number that increases by leaps and bounds for every new block and monomer species added to the selection.

The researchers, who also include scientists from the University of Minnesota and the University of Texas, suggest an approach that addresses materials performance needs by combining predictive computer simulation methods with advanced synthetic and structural characterization tools.

"Our simulation methods for predicting the self-assembled structures of multiblock polymers are quite advanced, and we are getting better at relating those nano-structures to the properties of the material," said Fredrickson. "Multiblock polymers are extremely versatile –– there is enormous latitude of design freedom, and it's very promising in terms of developing materials with truly unique properties."

Sonia Fernandez | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>