Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guelph researchers solve part of hagfish slime mystery

04.04.2014

University of Guelph researchers have unravelled some of the inner workings of slime produced by one of nature's most bizarre creatures – hagfish.

They've learned how the super-strong and mega-long protein threads secreted by the eel-like animals are organized at the cellular level. Their research was published today in the science journal Nature Communications.

Hagfish Slime Cell Images

Fig. 2a shows a three-dimensional reconstruction of thread packing within a developing hagfish gland thread cell. Fig. 2b shows a three-dimensional reconstruction of 12 continuous loops of thread within a developing hagfish gland thread cell, revealing the pattern of thread coiling. One loop is highlighted in green. Other objects in the image are mitochondria (red) and nucleus (blue). Fig. 2c shows our three-dimensional model of thread coiling within hagfish gland thread cells based on insights gleaned from Fig. 2b.

Credit: Douglas Fudge

The slime-making process has fascinated and perplexed biologists for more than 100 years, says lead author Prof. Douglas Fudge of Guelph's Department of Integrative Biology.

Besides satisfying scientific curiosity, the discovery also provides valuable insights into the quest to produce synthetic versions of hagfish threads for commercial use.

... more about:
»Integrative »coiled »hagfish »morphology »slime »solve »synthetic

"What we are doing is biomimicry, imitating and getting inspiration from nature to help solve complex human problems," Fudge said.

"We know that hagfish slime has incredible, interesting properties -- we just don't know how it's achieved. We do know that it's a complex process, and the final product is a super fibre that is almost as strong as spider silk. We need to figure out how the cells make these fibres that are so special."

Hagfishes are an ancient group of bottom-dwelling creatures that have remained relatively unchanged for more than 300 million years. When threatened, they secrete a gelatinous slime containing mucus and tens of thousands of protein threads coiled like skeins of yarn.

The threads are incredibly strong and extremely long, and can uncoil rapidly without tangling. "It's pretty amazing, considering that one of these threads is the equivalent of a rope that is one centimetre in diameter and 1.5 kilometres long," Fudge said.

"How do you coil a rope that long in such a way that it doesn't tangle when it unravels?"

The protein threads could be spun and woven into novel biomaterials, which could provide a sustainable alternative to synthetic fibres such as Nylon, which are made from petroleum feedstocks.

Stretched enough, the protein molecules snap into different arrangements, becoming stronger and tougher, and more akin to spider dragline silks and high performance synthetics like Kevlar, Fudge said. That suggests more applications, including anything from bullet-proof vests to ropes or artificial tendons.

Scientists hope to duplicate the thread-making process, but so far, synthetic versions have proven inferior to natural slime threads.

"If we have any chance of making these things artificially, we have to know how the hagfishes produce these threads inside of their cells," Fudge said.

"We decided to figure out how the thread is organized first, because it may give us clues as to how the cells make it."

Fudge and Guelph researchers Timothy Winegard, Julia Herr and Mark Bernards teamed up with neuro-imaging specialists from universities in California and Michigan. They examined the pattern of slime thread coiling within developing cells using light and electron microscopy and 3D imaging and modelling.

"For the first time, we had the technology to study the morphology and structure of the threads in the cells," Fudge said.

They found that the 15-centimetre-long protein threads are arranged in "skeins" of 15 to 20 conical layers of loops.

Changes in nuclear morphology, size and position explain how the threads are coiled in cells, and the threads change in length and width as cells mature. The next step is to unravel the biochemical and biophysical mechanism behind those changes. "This study provided information about how the thread coils and fills the cells as it grows," Fudge said.

"And these results led us to some very strong clues about how the threads are actually made, and figuring that out is the ultimate goal."

Douglas Fudge | EurekAlert!
Further information:
http://www.uoguelph.ca

Further reports about: Integrative coiled hagfish morphology slime solve synthetic

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>