Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guelph researchers solve part of hagfish slime mystery

04.04.2014

University of Guelph researchers have unravelled some of the inner workings of slime produced by one of nature's most bizarre creatures – hagfish.

They've learned how the super-strong and mega-long protein threads secreted by the eel-like animals are organized at the cellular level. Their research was published today in the science journal Nature Communications.

Hagfish Slime Cell Images

Fig. 2a shows a three-dimensional reconstruction of thread packing within a developing hagfish gland thread cell. Fig. 2b shows a three-dimensional reconstruction of 12 continuous loops of thread within a developing hagfish gland thread cell, revealing the pattern of thread coiling. One loop is highlighted in green. Other objects in the image are mitochondria (red) and nucleus (blue). Fig. 2c shows our three-dimensional model of thread coiling within hagfish gland thread cells based on insights gleaned from Fig. 2b.

Credit: Douglas Fudge

The slime-making process has fascinated and perplexed biologists for more than 100 years, says lead author Prof. Douglas Fudge of Guelph's Department of Integrative Biology.

Besides satisfying scientific curiosity, the discovery also provides valuable insights into the quest to produce synthetic versions of hagfish threads for commercial use.

... more about:
»Integrative »coiled »hagfish »morphology »slime »solve »synthetic

"What we are doing is biomimicry, imitating and getting inspiration from nature to help solve complex human problems," Fudge said.

"We know that hagfish slime has incredible, interesting properties -- we just don't know how it's achieved. We do know that it's a complex process, and the final product is a super fibre that is almost as strong as spider silk. We need to figure out how the cells make these fibres that are so special."

Hagfishes are an ancient group of bottom-dwelling creatures that have remained relatively unchanged for more than 300 million years. When threatened, they secrete a gelatinous slime containing mucus and tens of thousands of protein threads coiled like skeins of yarn.

The threads are incredibly strong and extremely long, and can uncoil rapidly without tangling. "It's pretty amazing, considering that one of these threads is the equivalent of a rope that is one centimetre in diameter and 1.5 kilometres long," Fudge said.

"How do you coil a rope that long in such a way that it doesn't tangle when it unravels?"

The protein threads could be spun and woven into novel biomaterials, which could provide a sustainable alternative to synthetic fibres such as Nylon, which are made from petroleum feedstocks.

Stretched enough, the protein molecules snap into different arrangements, becoming stronger and tougher, and more akin to spider dragline silks and high performance synthetics like Kevlar, Fudge said. That suggests more applications, including anything from bullet-proof vests to ropes or artificial tendons.

Scientists hope to duplicate the thread-making process, but so far, synthetic versions have proven inferior to natural slime threads.

"If we have any chance of making these things artificially, we have to know how the hagfishes produce these threads inside of their cells," Fudge said.

"We decided to figure out how the thread is organized first, because it may give us clues as to how the cells make it."

Fudge and Guelph researchers Timothy Winegard, Julia Herr and Mark Bernards teamed up with neuro-imaging specialists from universities in California and Michigan. They examined the pattern of slime thread coiling within developing cells using light and electron microscopy and 3D imaging and modelling.

"For the first time, we had the technology to study the morphology and structure of the threads in the cells," Fudge said.

They found that the 15-centimetre-long protein threads are arranged in "skeins" of 15 to 20 conical layers of loops.

Changes in nuclear morphology, size and position explain how the threads are coiled in cells, and the threads change in length and width as cells mature. The next step is to unravel the biochemical and biophysical mechanism behind those changes. "This study provided information about how the thread coils and fills the cells as it grows," Fudge said.

"And these results led us to some very strong clues about how the threads are actually made, and figuring that out is the ultimate goal."

Douglas Fudge | EurekAlert!
Further information:
http://www.uoguelph.ca

Further reports about: Integrative coiled hagfish morphology slime solve synthetic

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

How wind sculpted Earth's largest dust deposit

02.09.2015 | Earth Sciences

Risk of financial crisis higher than previously estimated

02.09.2015 | Studies and Analyses

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>