Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guardian of the genome: Structure of key enzyme decoded

05.07.2017

Scientists from the University of Würzburg solved the structure of the human protein RecQ4 and gained insights into its unusual functional mechanisms, which could help towards the development of new therapeutic strategies against certain tumors.

Living organisms aim to preserve their genomic integrity to maintain cellular functions and to pass on the correct genetic information to following generations. An important role in preserving genetic information is performed by RecQ helicases, a group of enzymes that is involved in central DNA-based processes, including DNA replication, recombination and repair. RecQ helicases are highly conserved among all living organisms, from bacteria to humans.


The structure of RecQ4 features the conserved helicase core domains (blue), which are connected to the novel RecQ4-zinc-binding domain (green) via a bridging helix bundle (grey). Zinc ion in turquoise

Photo: Kisker Group

In humans, malfunction of these important enzymes causes serious chromosomal damages, resulting in fatal diseases. The development of novel therapies to treat such diseases relies on the detailed knowledge of how these RecQ helicases operate at the molecular level.

RecQ4 is involved in cancer development

Scientists of the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg investigated a particular member of this central enzyme family, called RecQ4. It is known that an impairment of RecQ4 function promotes the development of different types of cancer and provokes symptoms of premature aging. Moreover, mutations in the RecQ4 helicase are linked to systemic diseases like the Rothmund-Thomson-Syndrome and RAPADILINO-Syndrome, which are characterized by skeletal abnormalities and growth retardation.

Researchers from the group of Prof. Caroline Kisker now successfully determined the crystal structure of the human RecQ4 helicase and identified unique domains in this protein, which are not shared with any other RecQ member. While the helicase core comprises the conserved structural fold of a molecular power station that provides the energy to unwind the double-stranded DNA, further functional domains that are characteristic for the enzyme family are missing. Instead, the scientists identified a novel protein domain that is potentially responsible for specific RecQ4 functions.

An uncommon mechanism

Due to the special structural properties of RecQ4, the scientists assume an uncommon helicase mechanism. "Other human RecQ helicases use a molecular wedge element to seperate the double-stranded DNA", explains Prof. Kisker. "In RecQ4 we could not identify such a structure so far. That leads to the question, how the enzyme performs this strand separation mechanism?" Potentially, RecQ4 could strongly bend the DNA in order to weaken the paired bases and thereby separate the DNA strands - a mechanism known from bacterial RecQ helicases. An exceptional role for RecQ4 is also assumed based on its special cellular distribution: it is the only RecQ helicase, which localizes to mitochondria in addition to the cell nucleus and the cytoplasm. Thus, the enzyme might also be involved in replication and preservation of mitochondrial DNA.

Development of therapeutic approaches

Recently published in Nature Communications, the results on the RecQ4 helicase provide novel insights into the architecture and function of this important protein. Moreover, the structure of RecQ4 represents a valuable model to understand and investigate the development of RecQ4-associated diseases. Finally, due to the unique structure and the prominently elevated expression levels in cells of different cancer types, RecQ4 could resemble a promising target to develop novel therapeutic approaches in the fight against cancer.

Publication:
Kaiser S., Sauer F., Kisker C. (2017) The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nature Communications 8, 15907

Website:
http://www.rudolf-virchow-zentrum.de/home.html
http://virchow.uni-wuerzburg.de/kiskerlab/

Contact:
Prof. Dr. Caroline Kisker (Structural Biology, Rudolf Virchow Center)
Tel. +49 (0)931 31 - 80405, caroline.kisker@virchow.uni-wuerzburg.de

Dr. Frank Sommerlandt (Public Science Center, Rudolf Virchow Center)
Tel. +49 (0)931 31 - 88449, frank.sommerlandt@uni-wuerzburg.de

Dr. Frank Sommerlandt | idw - Informationsdienst Wissenschaft

Further reports about: Biomedizin DNA RecQ double-stranded DNA enzyme enzymes genetic information helicase key enzyme

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>