Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth Regulator mTORC2 Linked to Diabetes

14.05.2012
The signaling protein mTOR is a key regulator that controls cell growth. Dysfunction of mTOR increases not only the likelihood of developing cancer but also diabetes.
In the current issue of the journal «Cell Metabolism», Mike Hall and his team from the Biozentrum of the University of Basel describe how inhibition of mTOR signaling can impair carbohydrate metabolism and potentially lead to diabetes.

The protein mTOR regulates both cell growth and metabolism and thus plays a key role in the development of many disorders. In the cell, this regulatory protein is found in two structurally and functionally distinct multiprotein complexes called mTORC1 and mTORC2. mTORC2 is less well studied than mTORC1.
After the research group of Mike Hall from the Biozentrum of the University of Basel recently demonstrated how mTORC2 is activated in tumor cells, a new investigation by the same team has shed light on the role of mTORC2 in carbohydrate metabolism and in the development of diabetes.

Diabetes due to mTORC2 deficiency
In the healthy organism, insulin regulates blood glucose levels and activates the mTORC2 signaling pathway. Upon genetic inactivation of mTORC2 in the liver, blood glucose and insulin levels were elevated as soon as a few weeks after birth. In addition, the loss of mTORC2 led to insulin resistance. Consequently, liver cells could no longer respond to nutrients supplied via the diet and continued to produce new carbohydrates despite rising blood glucose levels.

The scientists also demonstrated how insulin resistance, originally affecting only the liver, spread to the whole body with the increasing age of the animals. The mice developed the typical symptoms of type 2 diabetes. The cell biologist Dr. Marion Cornu commented, "We were excited to see that the inhibition of mTORC2 in the liver caused an imbalance in carbohydrate metabolism not only in the liver but also in the the whole organism. This told us that mTORC2 in the liver controls metabolism of the whole body."

Cancer treatment with side effects
mTOR inhibitors currently being developed for use against tumor growth usually inhibit both mTOR complexes. Through the use of newer, more specific mTORC2 inhibitors doctors hope to be able to prevent uncontrolled growth of tumor cells without affecting healthy cells. The new findings of Hall and his team provide evidence that such cancer treatments must take into account the development of diabetes as a possible side effect.

Original article
Asami Hagiwara, Marion Cornu, Nadine Cybulski, Pazit Polak, Charles Betz, Francesca Trapani, Luigi Terracciano, Markus H. Heim, Markus A. Rüegg, Michael N. Hall
Hepatic mTORC2 Activates Glycolysis and Lipogenesis through Akt, Glucokinase, and SREBP1c
Cell Metabolism, Volume 15, Issue 5, 725-738, 19 April 2012 | doi: 10.1016/j.cmet.2012.03.015

Media Contact
Prof. Dr. Michael N. Hall, Biozentrum of the University of Basel, Tel: +41 61 267 21 50, E-mail: m.hall@unibas.ch

Reto Caluori | idw
Further information:
http://www.unibas.ch
http://www.cell.com/cell-metabolism/abstract/S1550-4131%2812%2900135-0

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>