Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Growing” molecules on plates

10.09.2014

Thousands of potentially bioactive molecules can be made rapidly by mixing 20 or so building blocks together. Researchers at ETH-Zürich (Switzerland) and the Institute of Transformative Bio-Molecules (Japan) have developed a new technique to generate large libraries of novel organic molecules, a method that was inspired by Nature.

Microorganisms are able to synthesize mixtures of complex organic molecules, such as antibiotics from simple organic building blocks by fermentation. Prof. Jeffrey Bode, who led the research, was inspired by this approach and realized that synthetic chemistry could also “grow” biologically active molecules by using his powerful bond making reaction, KAHA (alpha-ketoacid-hydroxylamine) ligation.


Figure 1. “Synthetic Fermentation” - synthesizing libraries of compounds on well-plates that can be directly tested for biological activity such as in the lab, at high schools and on farms.

Copyright : ITbM, Nagoya University


Figure 2. a) Synthetic fermentation to form thousands of peptides from a relatively small number of building blocks; b) KAHA ligation to build peptide chains.

Copyright : ITbM, Nagoya University

This reaction enables rapid formation of an amide bond, found in peptides and proteins, simply by mixing in order an alpha-ketoacid molecule and a hydroxylamine molecule in water. No additional reagents and no subsequent purification are required in the reaction.

“Synthetic fermentation” applies the KAHA ligation reaction to build ‘cultures’ of compounds in well-plates that can be subjected directly to biological assays. Prof. Bode’s technique has demonstrated that about 6,000 unnatural peptides can be made from only 23 building blocks, and has succeeded in identifying a biologically active molecule towards treatment of the hepatitis C virus.

Details of this new technique, published online on September 7, 2014 in Nature Chemistry, is expected to be useful for rapidly generating thousands or millions of molecules, which will be useful for drug discovery as well as for onsite screening of biologically active molecules.

“Our dream is to provide a “do-it-yourself” method – one that can be done by anyone, anywhere to make and assess millions of organic molecules, without using dangerous reagents,” says Prof. Bode. “We envision that synthetic fermentation could be used by farmers to generate and identify new anti-bacterial or anti-fungal molecules to treat plant diseases,” describes Prof. Bode.

Organic synthesis often involves multiple steps, the use of toxic reagents and requires tedious purification prior to biological screening. Prof. Bode says, “The hardest part of this work was looking beyond the entrenched idea that we needed single, pure compounds to do the biological screening. It was only when we looked at the way Nature makes new medicines – by producing dozens of similar compounds together – that we realized we could use our chemistry to do something very similar. By taking this inspiration, we found that we could make thousands of compounds from a few building blocks in a few hours, rather than the months it would normally take.”

“By providing a safe and simple method to form new organic molecules, we hope to establish kits combined with a suitable assay that can be used by anyone to discover new molecules with a desired function or property,” says Prof. Bode.

This article “Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents” by Yi-Lin Huang and Jeffrey W. Bode is published online on September 7, 2014 in Nature Chemistry as an Advanced Online Publication.
DOI: 10.1038/nchem.2048

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a “Mix-Lab” style, where international young researchers from multidisciplinary fields work together side-by-side in the same lab. Through these endeavors, ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society.

Author Contact
Professor Jeffrey Bode
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
E-mail: bode@itbm.nagoya-u.ac.jp

ETH-Zürich
Laboratory of Organic Chemistry
HCI F 315, Wolfgang-Pauli-Strasse 10
8093 Zürich, Switzerland
Tel: +41-44-633-2103
E-mail: bode@org.chem.ethz.ch

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: press@itbm.nagoya-u.ac.jp

Nagoya University Public Relations Office
TEL: +81-52-789-2016 FAX: +81-52-788-6272
E-mail: kouho@adm.nagoya-u.ac.jp

Associated links

Journal information

Nature Chemistry

Ayako Miyazaki | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: Nature bio-molecules blocks compounds peptides purification reaction steps synthetic thousands

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>