Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing brain is particularly flexible

23.06.2010
Max Planck scientists investigate how the brain changes during growth

Science has long puzzled over why a baby's brain is particularly flexible and why it easily changes. Is it because babies have to learn a lot? A group of researchers from the Bernstein Network Computational Neuroscience, the Max Planck Institute for Dynamics and Self-Organization in Göttingen, the Schiller University in Jena and Princeton University (USA) have now put forward a new explanation: Maybe it is because the brain still has to grow.

Using a combination of experiments, mathematical models and computer simulations they showed that neuronal connections in the visual cortex of cats are restructured during the growth phase and that this restructuring can be explained by self-organisational processes. The study was headed by Matthias Kaschube, former researcher at the Max Planck Institute for Dynamics and Self-Organization and now at Princeton University (USA). (PNAS, published online June 21, 2010)

The brain is continuously changing. Neuronal structures are not hard-wired, but are modified with every learning step and every experience. Certain areas of the brain of a newborn baby are particularly flexible, however. In animal experiments, the development of the visual cortex can be strongly influenced in the first months of life, for example, by different visual stimuli.

Nerve cells in the visual cortex of fully-grown animals divide up the processing of information from the eyes: Some "see" only the left eye, others only the right. Cells of right or left specialisation each lie close to one another in small groups, called columns. The researchers showed that during growth, these structures are not simply inflated - columns do not become larger but their number increases. Neither do new columns form from new nerve cells. The number of nerve cells remains almost unchanged, a large part of the growth of the visual cortex can be attributed to an increase in the number of non-neuronal cells. These changes can be explained by the fact that existing cells change their preference for the right or the left eye. In addition, another of the researchers' observations also points to such a restructuring: The arrangement of the columns changes. While the pattern initially looks stripy, these stripes dissolve in time and the pattern becomes more irregular.

"This is an enormous achievement by the brain - undertaking such a restructuring while continuing to function," says Wolfgang Keil, scientist at the Max Planck Institute for Dynamics and Self-Organization Göttingen and first author of the study. "There is no engineer behind this conducting the planning, the process must generate itself." The researchers used mathematical models and computer simulations to investigate how the brain could proceed to achieve this restructuring. On the one hand, the brain tries to keep the neighbourhood relations in the visual cortex as uniform as possible. On the other, the development of the visual cortex is determined by the visual process itself - cells which have once been stimulated more strongly by the left or right eye try to maintain this particular calling. The researchers' model explains the formation of columns by taking both these tendencies into account. The scientists showed that when the tissue grows and the size of the columns is kept constant, the columns in the computer model change exactly as they had observed in their experimental studies on the visual cortex of the cat: The stripes dissolve into a zigzag pattern and thus become more irregular. In this way, the researchers provide a mathematical basis which realistically describes how the visual cortex could restructure during the growth phase.

Original work:

Wolfgang Keil, Karl-Friedrich Schmidt, Siegrid Löwel and Matthias Kaschube
Reorganization of columnar architecture in the growing visual cortex
PNAS, published online on June 21, 2010
Contact:
Wolfgang Keil
Max-Planck-Institute for Dynamics and Self-Organization, Göttingen
Tel.: +49(0)551 5176 551
E-mail: wolfgang@nld.ds.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>