Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing brain is particularly flexible

23.06.2010
Max Planck scientists investigate how the brain changes during growth

Science has long puzzled over why a baby's brain is particularly flexible and why it easily changes. Is it because babies have to learn a lot? A group of researchers from the Bernstein Network Computational Neuroscience, the Max Planck Institute for Dynamics and Self-Organization in Göttingen, the Schiller University in Jena and Princeton University (USA) have now put forward a new explanation: Maybe it is because the brain still has to grow.

Using a combination of experiments, mathematical models and computer simulations they showed that neuronal connections in the visual cortex of cats are restructured during the growth phase and that this restructuring can be explained by self-organisational processes. The study was headed by Matthias Kaschube, former researcher at the Max Planck Institute for Dynamics and Self-Organization and now at Princeton University (USA). (PNAS, published online June 21, 2010)

The brain is continuously changing. Neuronal structures are not hard-wired, but are modified with every learning step and every experience. Certain areas of the brain of a newborn baby are particularly flexible, however. In animal experiments, the development of the visual cortex can be strongly influenced in the first months of life, for example, by different visual stimuli.

Nerve cells in the visual cortex of fully-grown animals divide up the processing of information from the eyes: Some "see" only the left eye, others only the right. Cells of right or left specialisation each lie close to one another in small groups, called columns. The researchers showed that during growth, these structures are not simply inflated - columns do not become larger but their number increases. Neither do new columns form from new nerve cells. The number of nerve cells remains almost unchanged, a large part of the growth of the visual cortex can be attributed to an increase in the number of non-neuronal cells. These changes can be explained by the fact that existing cells change their preference for the right or the left eye. In addition, another of the researchers' observations also points to such a restructuring: The arrangement of the columns changes. While the pattern initially looks stripy, these stripes dissolve in time and the pattern becomes more irregular.

"This is an enormous achievement by the brain - undertaking such a restructuring while continuing to function," says Wolfgang Keil, scientist at the Max Planck Institute for Dynamics and Self-Organization Göttingen and first author of the study. "There is no engineer behind this conducting the planning, the process must generate itself." The researchers used mathematical models and computer simulations to investigate how the brain could proceed to achieve this restructuring. On the one hand, the brain tries to keep the neighbourhood relations in the visual cortex as uniform as possible. On the other, the development of the visual cortex is determined by the visual process itself - cells which have once been stimulated more strongly by the left or right eye try to maintain this particular calling. The researchers' model explains the formation of columns by taking both these tendencies into account. The scientists showed that when the tissue grows and the size of the columns is kept constant, the columns in the computer model change exactly as they had observed in their experimental studies on the visual cortex of the cat: The stripes dissolve into a zigzag pattern and thus become more irregular. In this way, the researchers provide a mathematical basis which realistically describes how the visual cortex could restructure during the growth phase.

Original work:

Wolfgang Keil, Karl-Friedrich Schmidt, Siegrid Löwel and Matthias Kaschube
Reorganization of columnar architecture in the growing visual cortex
PNAS, published online on June 21, 2010
Contact:
Wolfgang Keil
Max-Planck-Institute for Dynamics and Self-Organization, Göttingen
Tel.: +49(0)551 5176 551
E-mail: wolfgang@nld.ds.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>