Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grooving Down the Helix

07.12.2009
Researchers show how proteins slide along DNA to carry out vital biological processes

A team of scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Harvard University, and the Indian Institute of Science has made a major step in understanding how molecules locate the genetic information in DNA that is necessary to carry out important biological processes.

The research, published in the December 1, 2009 edition of Nature Structural & Molecular Biology, confirms that many proteins responsible for interacting at specific sites on DNA find their targets by sliding along one of the grooves of the DNA double helix in a spiraling fashion.

“Essentially, proteins that search for specific information spin down the double helix of the DNA, like traveling along the threads of a screw, until they locate their target,” said co-author Walter Mangel, a Brookhaven biophysicist.

This research provides experimental proof of a recent theory put forth by the team and could lead to new ways to alter the behavior of DNA-binding proteins, which are responsible for replicating and repairing DNA, and for turning genes on and off.

For decades, scientists have known that proteins searching for genetic sequences are able to locate them at rates much faster than expected. They found that rather than moving around the entire three-dimensional space inside a cell, they moved in one-dimension, along DNA molecules. The Harvard group showed, in 2006, that the proteins slide back and forth in direct contact with the DNA as part of the search for specific sequences.

Until now, however, the exact nature of the path these molecules take along the DNA has not been known. Competing biological models assert that the proteins either move in a straight line parallel to the DNA axis or trace more complex helical paths, following a strand or groove of DNA around that axis.

One challenge is that the very fine and quick motions occur at extremely small space and time scales. This means that the precise motions of a DNA-binding molecule are difficult to observe directly. So the researchers used indirect methods to determine the protein’s path.

With a special fluorescence microscope, collaborating scientists led by Sunney Xie at Harvard University observed single protein molecules labeled with a fluorescent dye binding to and then sliding along the DNA. Although they could not see the exact path the molecules were sliding on, they could measure how fast the molecules were going.

Depending on how a protein moves along a DNA axis — either in a linear or helical pattern —it will encounter different degrees of resistance, as shown in the earlier paper. If protein motion is linear, its speed will decrease proportionately as its radius increases. If a protein exhibits helical motion, it will experience additional friction and its speed will decrease much faster as its radius increases.

Using a human DNA repair protein as a test for the protein rotation model, Paul Blainey, now at Stanford University, found the latter case to be true. When he increased the size of the protein, the rate of motion decreased much more rapidly than it would have for a simple linear motion.

Relying on the same technique, the group went on to analyze the diffusion rates of eight different proteins of various sizes. These molecules had highly diverse functions — such as DNA replication, cleavage, and repair — and DNA-binding mechanisms. They were also taken from a range of organisms, including mammals, bacteria, and human viruses.

The researchers observed the same pattern: The speed of each protein decreased dramatically as its radius increased, as predicted by the theory for helical sliding.

“The data present strong evidence that proteins seek out targeted DNA sequences by spinning down the helix rather than linearly sliding along its axis,” said Biman Bigachi, a co-author from the Indian Institute of Science.

This work validates the new equation for describing and predicting the motion of protein molecules along strands of DNA with a higher degree of accuracy than ever before. It enhances the possibilities of future research in understanding and manipulating the DNA-binding and sliding behavior of proteins.

Said Mangel, “By being able to predict the DNA sliding rate of a protein, one could alter the size of a protein and thereby alter its sliding rate. For example, certain viral proteins need to slide along DNA in order to cause infection. A small protein could be designed to bind to the viral protein to slow down its sliding rate. This might be a useful means to block a virus infection.”

This research was funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, the National Science Foundation, and the Department of Science and Technology of India.

Kendra Snyder | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>