Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to grips with migraine

24.06.2013
Researchers identify some of the biological roots of migraine from large-scale genome study

In the largest study of migraines, researchers have found 5 genetic regions that for the first time have been linked to the onset of migraine. This study opens new doors to understanding the cause and biological triggers that underlie migraine attacks.

The team identified 12 genetic regions associated with migraine susceptibility. Eight of these regions were found in or near genes known to play a role in controlling brain circuitries and two of the regions were associated with genes that are responsible for maintaining healthy brain tissue. The regulation of these pathways may be important to the genetic susceptibility of migraines.

Migraine is a debilitating disorder that affects approximately 14% of adults. Migraine has recently been recognized as the seventh disabler in the Global Burden of Disease Survey 2010 and has been estimated to be the most costly neurological disorder. It is an extremely difficult disorder to study because no biomarkers between or during attacks have been identified so far.

"This study has greatly advanced our biological insight about the cause of migraine," says Dr Aarno Palotie, from the Wellcome Trust Sanger Institute. "Migraine and epilepsy are particularly difficult neural conditions to study; between episodes the patient is basically healthy so it's extremely difficult to uncover biochemical clues.

"We have proven that this is the most effective approach to study this type of neurological disorder and understand the biology that lies at the heart of it."

The team uncovered the underlying susceptibilities by comparing the results from 29 different genomic studies, including over 100,000 samples from both migraine patients and control samples.

They found that some of the regions of susceptibility lay close to a network of genes that are sensitive to oxidative stress, a biochemical process that results in the dysfunction of cells.

The team expects many of the genes at genetic regions associated with migraine are interconnected and could potentially be disrupting the internal regulation of tissue and cells in the brain, resulting in some of the symptoms of migraine.

"We would not have made discoveries by studying smaller groups of individuals," says Dr Gisela Terwindt, co-author from Leiden University Medical Centre. "This large scale method of studying over 100,000 samples of healthy and affected people means we can tease out the genes that are important suspects and follow them up in the lab."

The team identified an additional 134 genetic regions that are possibly associated to migraine susceptibility with weaker statistical evidence. Whether these regions underlie migraine susceptibility or not still needs to be elucidated. Other similar studies show that these statistically weaker culprits can play an equal part in the underlying biology of a disease or disorder.

"The molecular mechanisms of migraine are poorly understood. The sequence variants uncovered through this meta-analysis could become a foothold for further studies to better understanding the pathophysiology of migraine" says Dr Kári Stefánsson, President of deCODE genetics.

"This approach is the most efficient way of revealing the underlying biology of these neural disorders," says Dr Mark Daly, from the Massachusetts General Hospital and the Broad Institute of MIT and Harvard. "Effective studies that give us biological or biochemical results and insights are essential if we are to fully get to grips with this debilitating condition.

"Pursuing these studies in even larger samples and with denser maps of biological markers will increase our power to determine the roots and triggers of this disabling disorder."

Publication Details
Verneri Anttila, Bendik S. Winsvold, Padhraig Gormley et al (2013) 'Genome-wide meta-analysis identifies new susceptibility loci for migraine' Advanced online publication in Nature Genetics 23 June Doi: 10.1038/ng.2676
Participating centres
A full list of participating centres can be found in the study
Funding
A full list of funding can be found in the study
Selected Websites

The Eli and Edythe L. Broad Institute of Harvard and MIT was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Aileen Sheehy | EurekAlert!
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>