Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to grips with migraine

24.06.2013
Researchers identify some of the biological roots of migraine from large-scale genome study

In the largest study of migraines, researchers have found 5 genetic regions that for the first time have been linked to the onset of migraine. This study opens new doors to understanding the cause and biological triggers that underlie migraine attacks.

The team identified 12 genetic regions associated with migraine susceptibility. Eight of these regions were found in or near genes known to play a role in controlling brain circuitries and two of the regions were associated with genes that are responsible for maintaining healthy brain tissue. The regulation of these pathways may be important to the genetic susceptibility of migraines.

Migraine is a debilitating disorder that affects approximately 14% of adults. Migraine has recently been recognized as the seventh disabler in the Global Burden of Disease Survey 2010 and has been estimated to be the most costly neurological disorder. It is an extremely difficult disorder to study because no biomarkers between or during attacks have been identified so far.

"This study has greatly advanced our biological insight about the cause of migraine," says Dr Aarno Palotie, from the Wellcome Trust Sanger Institute. "Migraine and epilepsy are particularly difficult neural conditions to study; between episodes the patient is basically healthy so it's extremely difficult to uncover biochemical clues.

"We have proven that this is the most effective approach to study this type of neurological disorder and understand the biology that lies at the heart of it."

The team uncovered the underlying susceptibilities by comparing the results from 29 different genomic studies, including over 100,000 samples from both migraine patients and control samples.

They found that some of the regions of susceptibility lay close to a network of genes that are sensitive to oxidative stress, a biochemical process that results in the dysfunction of cells.

The team expects many of the genes at genetic regions associated with migraine are interconnected and could potentially be disrupting the internal regulation of tissue and cells in the brain, resulting in some of the symptoms of migraine.

"We would not have made discoveries by studying smaller groups of individuals," says Dr Gisela Terwindt, co-author from Leiden University Medical Centre. "This large scale method of studying over 100,000 samples of healthy and affected people means we can tease out the genes that are important suspects and follow them up in the lab."

The team identified an additional 134 genetic regions that are possibly associated to migraine susceptibility with weaker statistical evidence. Whether these regions underlie migraine susceptibility or not still needs to be elucidated. Other similar studies show that these statistically weaker culprits can play an equal part in the underlying biology of a disease or disorder.

"The molecular mechanisms of migraine are poorly understood. The sequence variants uncovered through this meta-analysis could become a foothold for further studies to better understanding the pathophysiology of migraine" says Dr Kári Stefánsson, President of deCODE genetics.

"This approach is the most efficient way of revealing the underlying biology of these neural disorders," says Dr Mark Daly, from the Massachusetts General Hospital and the Broad Institute of MIT and Harvard. "Effective studies that give us biological or biochemical results and insights are essential if we are to fully get to grips with this debilitating condition.

"Pursuing these studies in even larger samples and with denser maps of biological markers will increase our power to determine the roots and triggers of this disabling disorder."

Publication Details
Verneri Anttila, Bendik S. Winsvold, Padhraig Gormley et al (2013) 'Genome-wide meta-analysis identifies new susceptibility loci for migraine' Advanced online publication in Nature Genetics 23 June Doi: 10.1038/ng.2676
Participating centres
A full list of participating centres can be found in the study
Funding
A full list of funding can be found in the study
Selected Websites

The Eli and Edythe L. Broad Institute of Harvard and MIT was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Aileen Sheehy | EurekAlert!
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>