Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting to grips with the complexity of disease proteins

Drug molecules seldom act simply on one protein but on protein complexes and networks. A deeper understanding of these 'cooperative assemblies' should lead to better targeting of drugs

New research into how proteins in human cells interact and 'talk' to each other is leading to a better understanding of how drug molecules work and should result in more effective therapies, according to a leading European scientist.

"Most of the time the mechanism of action of drugs is ill understood and we often do not even know the primary target of the drugs we swallow daily," Professor Giulio Superti-Furga of the Centre for Molecular Medicine of the Austrian Academy of Sciences said. "We do not know how these drugs work at the molecular level, and side effects can have serious consequences."

Superti-Furga was speaking at the European Science Foundation's 3rd Functional Genomics Conference in Innsbruck, Austria, held on 1-4 October. Functional genomics describes the way in which genes and their products, proteins, interact together in complex networks in living cells. If these interactions are abnormal, diseases can result. The Innsbruck meeting brought together more than 450 scientists from across Europe to discuss recent advances in the role of functional genomics in disease.

Our lack of understanding of the way that drugs work is illustrated by the fact that around four in ten drugs currently on the market were developed for one use but were subsequently found to be better for a different condition.

Researchers such as Superti-Furga are taking a taking a 'proteomics' approach to understanding precisely how certain proteins that are key drug targets organise themselves in the cell, and how they make complex interactions with often dozens of other proteins. "Proteomics is a way of joining the dots together to give us the bigger picture," he said.

Superti-Furga's team has been investigating a particular enzyme, a tyrosine kinase called Bcr-Abl, which is involved in leukaemia. A drug is available that acts on the enzyme, but it eventually loses its efficiency as patients become resistant to it. "We need to understand the relationship between the drug and the target," said Superti-Furga. "Can we understand the 3-d protein as a molecular machine much better?"

Superti-Furga's lab in Vienna has used a range of proteomics techniques to isolate the enzyme and dissect its constituent parts. They discovered that the protein exists as a complex of some 46 separate components and operates as a giant molecular machine, with each part in close communication with the others.

"It is clear that tyrosine kinase inhibitors do not simply inhibit the enzyme, but rather remodel the machine," Superti-Furga aid. "So drugs do not simply ablate things, they interfere with the equilibria of networks. If we can understand how these proteins interact, in the future people might say we should target this pathway or that network'; by targeting multiple nodes we will be able to maximise the good side effects against the bad side effects."

The team has also been developing methods to understand how the human body can recognise invading foreign genetic material - comprising nucleic acids - from bacteria or viruses for example, and distinguish it from its own, innate genetic material.

It is thought that proteins in the human cell can tell if a sequence of nucleic acids is from an invading organism. To try to identify these proteins the research team has developed a technique to test which proteins in a cell bind specifically to foreign nucleic acids. They have also observed which genes in the cell are switched on or 'up regulated' when foreign genetic material is present - and whether the proteins that are encoded by these genes are the same as those that bind to the material. A number of candidate proteins have emerged from this process and are undergoing further study.

The work will provide important insights into how the body defends itself against invading organisms.

Thomas Lau | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>