Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea component may help preserve stored platelets, tissues

16.09.2009
In two separate studies, a major component in green tea, epigallocatechin-3-O-gallate (EGCG), has been found to help prolong the preservation of both stored blood platelets and cryopreserved skin tissues.

Published in the current double issue of Cell Transplantation (18:5/6), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct, devoted to organ preservation and transplantation studies from Japan, the two complimentary studies have shown that EGCG, known to have strong anti-oxidative activity, can prolong platelet cell "shelf life" via anti-apoptosis (programmed cell death) properties and preserve skin tissues by controlling cell division.

Dr. Suong-Hyn Hyon, lead author on both studies and associate professor in the Institute for Frontier Medical Sciences in Kyoto, Japan, says that EGCG, a green tea polyphenol, is a known anti-oxidation and anti-proliferation agent, yet the exact mechanism by which EGCG works is not yet known. However, some of the activity of EGCG is likely to be related to its surface binding ability.

Enhanced platelet preservation

Using standard blood banking procedures, the storage duration for platelet cells (PCs) is limited to five days internationally or three days in Japan. During storage, PCs undergo biochemical, structural and functional changes, and PCs may lose membrane integrity and haemostatic functions, such as aggregability and affinity for surface receptors. Thus, PC shortages often occur. When EGCG was added to blood platelet concentrates, aggregation and coagulation functions were better-maintained after six days, perhaps due to EGCG's anti-oxidative ability. Researchers suggested that EGCG inhibited the activation of platelet functions and protected the surface proteins and lipids from oxidation.

"Functions were restored by the maintained surface molecules with the detachment of ECGC by washing," noted Dr. Hyon. "EGCG may lead to an inhibition of platelet apoptosis and lower rates of cell death, offering a potentially novel and useful method to prolong platelet storage period."

EGCG enhances life of cryopreserved skin grafts

Another team of Japanese researchers studied the effects of using EGCG on frozen, stored skin tissues. As with platelet storage, the storage of skin tissue for grafting presents problems of availability and limitations on the duration of storage.

"To provide best outcomes, skin grafts must be processed and stored in a manner that maintains their viability and structural integrity until they are needed for transplantation," explained Dr. Hyon. "Transplant dysfunction often occurs as the result of oxidation. A better storage solution could prevent this."

It is known that polyphenols in green tea promote the preservation of tissues, such as blood vessels, cornea, islet cells, articular cartilage and myocardium at room temperature. Also, it is known that ECGC has stronger anti-oxidant activities than vitamin C because of its sterochemical structure and is reported to play an important role in preventing cancer and cardiovascular diseases.

This study examined how EGCG might help extend the preservation duration of frozen rat skin tissues and found that skin grafts could be protected from freeze-thaw injuries when EGCG was absorbed into various membrane lipids and proteins. Results of the study showed that EGCG enhanced the viability and stored duration of skin grafts up to seven weeks at 4 degrees C.

"The storage time of skin grafts was extended to 24 weeks by cryopreservation using EGCG and the survival rate was almost 100 percent," noted Dr. Hyon."

"These studies highlight the benefits of using natural compounds such as ECGC to enhance the preservation of stored tissues, possibly due to their anti-oxidative properties" said Dr. Naoya Kobayashi, guest editor of this double issue of Cell Transplantation.

Contact: Suong-Hyu Hyon, PhD, associate professor, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 Japan.

Tel: +81 75 751 4125, Email: biogen@frontier.kyoto-u.ac.jp

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Suong-Hyu Hyon | EurekAlert!
Further information:
http://www.frontier.kyoto-u.ac.jp

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>