Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea component may help preserve stored platelets, tissues

16.09.2009
In two separate studies, a major component in green tea, epigallocatechin-3-O-gallate (EGCG), has been found to help prolong the preservation of both stored blood platelets and cryopreserved skin tissues.

Published in the current double issue of Cell Transplantation (18:5/6), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct, devoted to organ preservation and transplantation studies from Japan, the two complimentary studies have shown that EGCG, known to have strong anti-oxidative activity, can prolong platelet cell "shelf life" via anti-apoptosis (programmed cell death) properties and preserve skin tissues by controlling cell division.

Dr. Suong-Hyn Hyon, lead author on both studies and associate professor in the Institute for Frontier Medical Sciences in Kyoto, Japan, says that EGCG, a green tea polyphenol, is a known anti-oxidation and anti-proliferation agent, yet the exact mechanism by which EGCG works is not yet known. However, some of the activity of EGCG is likely to be related to its surface binding ability.

Enhanced platelet preservation

Using standard blood banking procedures, the storage duration for platelet cells (PCs) is limited to five days internationally or three days in Japan. During storage, PCs undergo biochemical, structural and functional changes, and PCs may lose membrane integrity and haemostatic functions, such as aggregability and affinity for surface receptors. Thus, PC shortages often occur. When EGCG was added to blood platelet concentrates, aggregation and coagulation functions were better-maintained after six days, perhaps due to EGCG's anti-oxidative ability. Researchers suggested that EGCG inhibited the activation of platelet functions and protected the surface proteins and lipids from oxidation.

"Functions were restored by the maintained surface molecules with the detachment of ECGC by washing," noted Dr. Hyon. "EGCG may lead to an inhibition of platelet apoptosis and lower rates of cell death, offering a potentially novel and useful method to prolong platelet storage period."

EGCG enhances life of cryopreserved skin grafts

Another team of Japanese researchers studied the effects of using EGCG on frozen, stored skin tissues. As with platelet storage, the storage of skin tissue for grafting presents problems of availability and limitations on the duration of storage.

"To provide best outcomes, skin grafts must be processed and stored in a manner that maintains their viability and structural integrity until they are needed for transplantation," explained Dr. Hyon. "Transplant dysfunction often occurs as the result of oxidation. A better storage solution could prevent this."

It is known that polyphenols in green tea promote the preservation of tissues, such as blood vessels, cornea, islet cells, articular cartilage and myocardium at room temperature. Also, it is known that ECGC has stronger anti-oxidant activities than vitamin C because of its sterochemical structure and is reported to play an important role in preventing cancer and cardiovascular diseases.

This study examined how EGCG might help extend the preservation duration of frozen rat skin tissues and found that skin grafts could be protected from freeze-thaw injuries when EGCG was absorbed into various membrane lipids and proteins. Results of the study showed that EGCG enhanced the viability and stored duration of skin grafts up to seven weeks at 4 degrees C.

"The storage time of skin grafts was extended to 24 weeks by cryopreservation using EGCG and the survival rate was almost 100 percent," noted Dr. Hyon."

"These studies highlight the benefits of using natural compounds such as ECGC to enhance the preservation of stored tissues, possibly due to their anti-oxidative properties" said Dr. Naoya Kobayashi, guest editor of this double issue of Cell Transplantation.

Contact: Suong-Hyu Hyon, PhD, associate professor, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 Japan.

Tel: +81 75 751 4125, Email: biogen@frontier.kyoto-u.ac.jp

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Suong-Hyu Hyon | EurekAlert!
Further information:
http://www.frontier.kyoto-u.ac.jp

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>