Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green industrial lubricant developed

14.07.2009
A team of researchers from the University of Huelva has developed an environmentally-friendly lubricating grease based on ricin oil and cellulose derivatives, according to the journal Green Chemistry. The new formula does not include any of the contaminating components used to manufacture traditional industrial lubricants.

"The objective of this research was to develop a product that could be used as a lubricating grease but that was made only from natural materials and was therefore 100% biodegradable", José María Franco, a chemical engineer at the University of Huelva and co-author of the study published recently in Green Chemistry, tells SINC.

Environmentally-friendly greases are "oleogels" that use cellulose derivatives from plants and ricin oil (from a bush in the Euphorbiaceae family) as a lubricant base. Franco says these new formulations are "an alternative to traditional lubricating greases, which create pollution that is difficult to combat once discharged into the environment".

Lubricants used in industry are made from non-biodegradable components, such as synthetic oils or petroleum derivatives, and thickeners made with metallic soaps or polyurea derivatives (a family of synthetic polymers). These are currently the best performers, but they also imply more problems from an environmental perspective.

Millions of tonnes of hydraulic and industrial oils, and others from machinery, are discharged each year into rivers, the sea and fields. Mineral-based oils can contaminate groundwater for more than 100 years, and can prevent the growth of trees and prove toxic to aquatic life.

Only partial solutions have been found to date for this problem, such as substituting mineral oil for vegetable ones, but no alternatives had been found to the metallic thickeners, which are also highly polluting. The new green grease provides an answer, although the scientists admit that "more research is needed" in order to perfect its lubricating and anti-wear performance.

Franco tells SINC that the new material "has a similar level of mechanical stability to that of traditional greases, and it is highly temperature resistant, with rheological properties (viscosity) that do not change greatly, although we have observed that the material is expelled in large quantities when subjected to large inertial forces at high temperatures". When this substance is used in bearings, it is important that it is not easily shed. This will reduce the lubrication frequency, thus maintaining the ideal functioning conditions for machinery for a longer time.

The researchers will continue to investigate this aspect in order to find a way of balancing the use of biodegradable ingredients to manufacture the grease while also optimising its lubricating capacity.

In any case, the scientists have proved that "oleogels" based on cellulose derivatives are not only environmentally friendly, but are also advantageous in that they are easier to process, and that manufacturing them requires simpler technology than that used to make conventional greases.

References:

R. Sánchez, J. M. Franco, M. A. Delgado, C. Valencia y C. Gallegos. "Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil". Green Chemistry 11: 686-693, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>