Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green industrial lubricant developed

14.07.2009
A team of researchers from the University of Huelva has developed an environmentally-friendly lubricating grease based on ricin oil and cellulose derivatives, according to the journal Green Chemistry. The new formula does not include any of the contaminating components used to manufacture traditional industrial lubricants.

"The objective of this research was to develop a product that could be used as a lubricating grease but that was made only from natural materials and was therefore 100% biodegradable", José María Franco, a chemical engineer at the University of Huelva and co-author of the study published recently in Green Chemistry, tells SINC.

Environmentally-friendly greases are "oleogels" that use cellulose derivatives from plants and ricin oil (from a bush in the Euphorbiaceae family) as a lubricant base. Franco says these new formulations are "an alternative to traditional lubricating greases, which create pollution that is difficult to combat once discharged into the environment".

Lubricants used in industry are made from non-biodegradable components, such as synthetic oils or petroleum derivatives, and thickeners made with metallic soaps or polyurea derivatives (a family of synthetic polymers). These are currently the best performers, but they also imply more problems from an environmental perspective.

Millions of tonnes of hydraulic and industrial oils, and others from machinery, are discharged each year into rivers, the sea and fields. Mineral-based oils can contaminate groundwater for more than 100 years, and can prevent the growth of trees and prove toxic to aquatic life.

Only partial solutions have been found to date for this problem, such as substituting mineral oil for vegetable ones, but no alternatives had been found to the metallic thickeners, which are also highly polluting. The new green grease provides an answer, although the scientists admit that "more research is needed" in order to perfect its lubricating and anti-wear performance.

Franco tells SINC that the new material "has a similar level of mechanical stability to that of traditional greases, and it is highly temperature resistant, with rheological properties (viscosity) that do not change greatly, although we have observed that the material is expelled in large quantities when subjected to large inertial forces at high temperatures". When this substance is used in bearings, it is important that it is not easily shed. This will reduce the lubrication frequency, thus maintaining the ideal functioning conditions for machinery for a longer time.

The researchers will continue to investigate this aspect in order to find a way of balancing the use of biodegradable ingredients to manufacture the grease while also optimising its lubricating capacity.

In any case, the scientists have proved that "oleogels" based on cellulose derivatives are not only environmentally friendly, but are also advantageous in that they are easier to process, and that manufacturing them requires simpler technology than that used to make conventional greases.

References:

R. Sánchez, J. M. Franco, M. A. Delgado, C. Valencia y C. Gallegos. "Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil". Green Chemistry 11: 686-693, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>