Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green-glowing fish provides new insights into health impacts of pollution

18.04.2012
Understanding the damage that pollution causes to both wildlife and human health is set to become much easier thanks to a new green-glowing zebrafish.

Created by a team from the University of Exeter, the fish makes it easier than ever before to see where in the body environmental chemicals act and how they affect health.


Understanding the damage that pollution causes to both wildlife and human health is set to become much easier thanks to a new green-glowing zebrafish. Created by a team from the University of Exeter, the fish makes it easier than ever before to see where in the body environmental chemicals act and how they affect health. Credit: University of Exeter

The fluorescent fish has shown that oestrogenic chemicals, which are already linked to reproductive problems, impact on more parts of the body than previously thought.

The research by the University of Exeter and UCL (University College London) is published today (18 April 2012) in the journal Environmental Health Perspectives.

Numerous studies have linked 'endocrine-disrupting' chemicals, used in a wide range of industrial products and contraceptive pharmaceuticals, to reproductive problems in wildlife and humans. Previous University of Exeter research identified the potential for a major group of 'these chemicals to cause male fish to change gender. Human exposure to these chemicals, which can alter hormone signalling in the body, has been associated with decreases in sperm count and other health problems, including breast and testicular cancer.

Scientists worldwide are now working to find better ways of screening and testing for these chemicals in the body, to target the health risks to humans and wildlife. This new development, led by Dr Tetsuhiro Kudoh and Professor Charles Tyler at the University of Exeter, gives the first comprehensive insight into the effects of these chemicals on the whole body. It shows that more organs and parts of the body react to environmental estrogens than previously thought.

The team created a new transgenic zebrafish, which when exposed to environmental oestrogens shows where these chemicals work in the body through the production of green fluorescent signals. The research team tested the fish's sensitivity to different chemicals known to affect oestrogen hormone signalling, including ethinyloestradiol, used in the contraceptive pill and hormone replacement therapy treatments, nonylphenol, used in paints and industrial detergents, and Bisphenol A, which is found in many plastics.

Eventually, they produced a fish that was sufficiently sensitive to the chemicals to give fluorescent green signals to show which parts of its body were responding. This was done by placing a genetic system into the fish that amplifies the response to oestrogens producing the fluorescent green signal.

In the laboratory, PhD student Okhyun Lee exposed the fish to chemicals at levels found in wastewaters that are discharged into our rivers. She was then able to observe the effects of the exposure on the fish, in real time, watching specific organs or areas of tissue glow green, in response to the chemicals.

The team identified responses in parts of the body already associated with these chemicals: for example, the liver and, in the case of Bisphenol A, the heart. They also witnessed responses in tissues that were not previously known to be targeted by these chemicals, including the skeletal muscle and eyes.

Corresponding author Professor Charles Tyler of the University of Exeter said: "This is a very exciting development in the international effort to understand the impact of oestrogenic chemicals on the environment and human health. This zebrafish gives us a more comprehensive view than ever before of the potential effects of these hormone-disrupting chemicals on the body.

"By being able to localise precisely where different environmental oestrogens act in the body, we will be able to more effectively target health effects analyses for these chemicals of concern. While it is still early days, we are confident that our zebrafish model can help us better understand the way the human body responds to these pollutants."

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Bacterial Nanosized Speargun Works Like a Power Drill
26.09.2017 | Universität Basel

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>