Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green-glowing fish provides new insights into health impacts of pollution

18.04.2012
Understanding the damage that pollution causes to both wildlife and human health is set to become much easier thanks to a new green-glowing zebrafish.

Created by a team from the University of Exeter, the fish makes it easier than ever before to see where in the body environmental chemicals act and how they affect health.


Understanding the damage that pollution causes to both wildlife and human health is set to become much easier thanks to a new green-glowing zebrafish. Created by a team from the University of Exeter, the fish makes it easier than ever before to see where in the body environmental chemicals act and how they affect health. Credit: University of Exeter

The fluorescent fish has shown that oestrogenic chemicals, which are already linked to reproductive problems, impact on more parts of the body than previously thought.

The research by the University of Exeter and UCL (University College London) is published today (18 April 2012) in the journal Environmental Health Perspectives.

Numerous studies have linked 'endocrine-disrupting' chemicals, used in a wide range of industrial products and contraceptive pharmaceuticals, to reproductive problems in wildlife and humans. Previous University of Exeter research identified the potential for a major group of 'these chemicals to cause male fish to change gender. Human exposure to these chemicals, which can alter hormone signalling in the body, has been associated with decreases in sperm count and other health problems, including breast and testicular cancer.

Scientists worldwide are now working to find better ways of screening and testing for these chemicals in the body, to target the health risks to humans and wildlife. This new development, led by Dr Tetsuhiro Kudoh and Professor Charles Tyler at the University of Exeter, gives the first comprehensive insight into the effects of these chemicals on the whole body. It shows that more organs and parts of the body react to environmental estrogens than previously thought.

The team created a new transgenic zebrafish, which when exposed to environmental oestrogens shows where these chemicals work in the body through the production of green fluorescent signals. The research team tested the fish's sensitivity to different chemicals known to affect oestrogen hormone signalling, including ethinyloestradiol, used in the contraceptive pill and hormone replacement therapy treatments, nonylphenol, used in paints and industrial detergents, and Bisphenol A, which is found in many plastics.

Eventually, they produced a fish that was sufficiently sensitive to the chemicals to give fluorescent green signals to show which parts of its body were responding. This was done by placing a genetic system into the fish that amplifies the response to oestrogens producing the fluorescent green signal.

In the laboratory, PhD student Okhyun Lee exposed the fish to chemicals at levels found in wastewaters that are discharged into our rivers. She was then able to observe the effects of the exposure on the fish, in real time, watching specific organs or areas of tissue glow green, in response to the chemicals.

The team identified responses in parts of the body already associated with these chemicals: for example, the liver and, in the case of Bisphenol A, the heart. They also witnessed responses in tissues that were not previously known to be targeted by these chemicals, including the skeletal muscle and eyes.

Corresponding author Professor Charles Tyler of the University of Exeter said: "This is a very exciting development in the international effort to understand the impact of oestrogenic chemicals on the environment and human health. This zebrafish gives us a more comprehensive view than ever before of the potential effects of these hormone-disrupting chemicals on the body.

"By being able to localise precisely where different environmental oestrogens act in the body, we will be able to more effectively target health effects analyses for these chemicals of concern. While it is still early days, we are confident that our zebrafish model can help us better understand the way the human body responds to these pollutants."

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>