Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green chemistry: The heat is on

28.03.2011
New findings reveal how layered metallic hydroxide crystals can trap carbon dioxide gas at elevated temperatures

‘Scrubbing’ carbon dioxide (CO2) from industrial exhaust gases is one of the critical steps needed to reduce CO2 emissions. It remains a major challenge for researchers, however, to find materials that can reliably soak up CO2 under the extreme conditions common to real-world industrial processes.

A study by Jizhong Luo and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore[1] now promises to help mitigate CO2 emissions by uncovering never-before-seen structural details of high-temperature sorption materials called layered double hydroxides (LDHs).

Composed of positively charged sheets of metal oxides interspersed with relatively open spaces holding anions and water molecules, LDHs have large, active surfaces that can react with CO2 and transform the gas into solid carbonate ions. Recently, scientists have used LDHs as part of an innovative technology called the sorption-enhanced water-gas shift that combines high-temperature hydrocarbon processing with CO2 removal in a single step. However, when LDHs reach their adsorption limits, they must be regenerated by heating to temperatures high enough to induce an internal structural transformation—a process known as calcination that can eventually destabilize the metal oxide layers.

Luo and his co-workers set out to understand the high-temperature performance of these adsorbents by adjusting the chemical composition of a typical magnesium–aluminum LDH. The researchers replaced the triply charged aluminum cations with iron, gallium and manganese cations and systematically observed how these substitutions affected structure, adsorption and thermal stability. Their results revealed, for the first time, the role such metal species play in LDH-based CO2 fixation.

Surprisingly, the researchers found that the new cations influenced the physical properties of the LDH more than its chemical behavior. “Generally, people may think that differences in chemical composition between LDHs will lead to different CO2 adsorption sites, and therefore different carbon capture capacities,” notes Luo. “However, our research demonstrates that the temperature-dependent structural evolution of LDHs is a much more important parameter.” Luo and his co-workers showed that distinct calcination temperatures for each LDH compound, as well as a unique quasi-amorphous phase, are key to maximizing CO2 adsorption levels.

The empirical ground-rules laid out by this study should help researchers select even better candidates for industrial CO2 scrubbers. “High-temperature CO2 adsorbents are a hot topic right now in carbon capture and sequestration,” Luo says. “In the future, we plan to use combinations of triply charged metal cations to better tune the CO2 capturing performance of LDHs.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

[1] Wang, Q. et al. The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture. ChemSusChem 3, 965–973 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6295
http://www.researchsea.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>