Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green and yellow – straw from oilseed as a new source of biofuels

26.05.2014

The bright yellow fields of oilseed rape are a familiar sight at this time of year, but for scientists what lies beneath is just as exciting.

Researchers at the Institute of Food Research are looking at how to turn straw from oilseed rape into biofuel. Preliminary findings are pointing at ways the process could be made more efficient, as well as how the straw itself could be improved.


Straw from crops such as wheat, barley, oats and oilseed rape is seen as a potential source of biomass for second generation biofuel production. Currently the UK produces around 12 million tonnes of straw. Although much is used for animal bedding, mushroom compost and energy generation, there still exists a vast surplus.

Straw contains a mix of sugars that could be used as a source of biofuels that do not compete with food production but instead represent a sustainable way of utilising waste. However, the sugars are in a form that makes them inaccessible to the enzymes that release them for conversion into biofuels, so pre-treatments are needed. The pre-treatments make the complex carbohydrates more accessible to enzymes that convert them to glucose, in a process called saccharification. This is then fermented by yeast into ethanol.

Using the facilities at the Biorefinery Centre on the Norwich Research Park, Professor Keith Waldron and his team have been looking at the steps needed to unlock the sugars tied up in the tough straw structure. In particular, they have looked at the pre-treatment stage, focusing on steam explosion, which involves ‘pressure-cooking’ the biomass, to drive a number of chemical reactions. A rapid pressure-release then causes the material to be ripped open, to further improve accessibility.

They varied the temperature and duration of steam explosion and then used a variety of physical and biochemical techniques to characterise what effects varying the pre-treatments had on the different types of sugars before and after saccharification.

The amount of cellulose converted to glucose increased with the severity of the pretreatment. Saccharification efficiency is also associated with the loss of specific sugars, and subsequent formation of sugar breakdown products.

In a further study funded by the BBSRC / EPSRC Integrated Biorefining Research and Technology Club, the scientists discovered the key factors that determine the efficiency of saccharification. One particular compound, uronic acid, limited the rate at which enzymes worked. The final sugar yield was closely related to the removal of xylan, a common component of plant cell walls. The abundance of lignin, a ‘woody’ cell wall component, was positively related to the amount of available sugars.

These findings will help improve the efficiency by which straw can be converted to biofuels. For example, adding enzymes that more effectively remove xylan should improve yield. Controlling the level of lignin in the material  should also help.

It may even be possible to improve the straw itself, for example to reduce the uronic acid content in the biomass, as suggested by these findings. In the main, oilseed rape has been bred to improve oilseed yield and disease resistance, without paying much attention to the straw. The IFR is working with colleagues at the University of York and the John Innes Centre to see whether there are ways of breeding more “biofuel-ready” varieties of oilseed rape, with the same yields of oilseed but with more amenable straw. In addition, a full understanding of the polysaccharides and other compounds made available during pretreatment may mean other valuable co-products, like platform chemicals, may be viably produced from the surplus straw.

References:

Steam explosion of oilseed rape straw: Establishing key determinants of saccharification efficiency, Bioresource Technology 162, 175-183 doi: 10.1016/j.biortech.2014.03.115

Changes in the composition of the main polysaccharide groups of oil seed rape straw following steam explosion and saccharification, Biomass and Bioenergy 61 121-130 doi: 10.1016/j.biombioe.2013.12.003

Andrew Chapple | Eurek Alert!
Further information:
http://news.ifr.ac.uk/2014/05/oilseed-straw-biofuels/

Further reports about: BioScience Green acid biomass enzymes findings pretreatment straw sugar sugars variety

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>