Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When green algae run out of air

24.06.2013
Single cell organisms need haemoglobin to survive in an oxygen-free environment

When green algae "can't breathe", they get rid of excess energy through the production of hydrogen. Biologists at the Ruhr-Universität Bochum have found out how the cells notice the absence of oxygen. For this, they need the messenger molecule nitric oxide and the protein haemoglobin, which is commonly known from red blood cells of humans. With colleagues at the UC Los Angeles, the Bochum team reported in the journal "PNAS".

Haemoglobin – an old protein in a new look

In the human body, haemoglobin transports oxygen from the lungs to the organs and brings carbon dioxide, which is produced there, back to the lungs. "However, scientists have known for years that there is not just the one haemoglobin", says Prof. Thomas Happe from the Work Group Photobiotechnology. Nature has produced a large number of related proteins which fulfil different functions. The green alga Chlamydomonas reinhardtii has what is known as a "truncated" haemoglobin, the function of which was previously unknown. Happe's team has deciphered its role in surviving in an oxygen-free environment.

In an oxygen-free environment, the green alga activates specific genes

When Chlamydomonas has no oxygen available, the algae transfer excess electrons to protons, creating hydrogen (H2). "For this to work, the green alga activates a certain gene programme and creates many new proteins", Happe explains. "But how exactly the cells even notice that oxygen is missing is something we did not know." The research team looked for genes that are particularly active when green algae have to live without oxygen – and found a gene that forms the blueprint for a haemoglobin. In an oxygen-rich environment, however, this gene was completely idle.

A haemoglobin and nitric oxide help green algae to survive

The scientists studied the haemoglobin protein and its genetic blueprint in more detail using molecular biological and biochemical analyses. "One thing became clear very quickly", says Dr. Anja Hemschemeier from the Work Group Photobiotechnology. "Algae in which we switched this gene off could hardly grow without oxygen." From previous studies it is known that in many organisms, haemoglobin detoxifies nitric oxide, because an overdose of this gas poisons the cells. The biologists therefore tested whether green algae which are no longer able to form haemoglobin after genetic manipulation die of nitric oxide poisoning. Their expectations: the green algae should fare better if the gas is removed using a chemical scavenger. "Surprisingly, then the algae were not able to grow at all", says Hemschemeier. The researchers concluded that, under oxygen-free conditions, haemoglobin and nitric oxide are in cahoots.

Nitric oxide signals: "no oxygen!"

Nitric oxide acts in many living organisms as a signalling molecule – apparently also in green algae. Experiments in vitro have shown that the green algal haemoglobin interacts with nitric oxide. When the researchers artificially introduced the gas to the single cell organisms, certain genes became active that are otherwise only "turned on" in the absence of oxygen. "From all this data we can conclude that Chlamydomonas uses nitric oxide to pass on the 'no oxygen!' signal within the cell, and that our haemoglobin is involved in this process", Happe sums up. His team wants to go on exploring the role of this protein in green algae, as the biologists have discovered another eleven haemoglobin genes in the organism. "Now things are really getting going", says the Bochum scientist. "The map of haemoglobin research has many blank spots that we want to fill with content. The fact that a single cell requires twelve haemoglobin proteins indicates that these fulfil finely tuned functions in the cell."

Bibliographic record

A. Hemschemeier, M. Düner, D. Casero, S.S. Merchant, M. Winkler, T. Happe (2013): Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1302592110

Figures online

Three images related to this press release can be found online at: http://aktuell.ruhr-uni-bochum.de/pm2013/pm00181.html.en

Further information

Prof. Dr. Thomas Happe, Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-27026, E-mail: thomas.happe@rub.de

Dr. Anja Hemschemeier, Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24282, E-mail: anja.hemschemeier@rub.de

Editor: Dr. Julia Weiler

Dr. Thomas Happe | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>