Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greater Accuracy in Gauging Blood Coagulation

23.02.2012
Fluorogenic Peptide-Based Substrates for Monitoring Thrombin Activity

Thrombin plays a key role in various pathologies of the haemostatic system. Overexpression of thrombin can result in thrombosis, whereas its underexpression might lead to haemophilia.

Therefore, accurate monitoring of thrombin activity is crucial for determining the proper treatment of a given patient, as this correlates with the ability of blood to coagulate. A tool for monitoring the activity of thrombin over time is the so-called thrombin generation test (TGT).

In a collaborative project headed by Floris Rutjes (Radboud University Nijmegen, Netherlands), novel thrombin-specific fluorogenic peptides were developed for accurately determining thrombin concentrations by the TGT. Adding such a peptide substrate to a clotting plasma sample results in its hydrolysis by thrombin, thereby releasing the fluorophore.

Spectrophotometric measurement of fluorophore release increases the sensitivity and thus accuracy of the TGT, yielding various essential coagulation parameters. The use of fluorogenic peptides in combination with the TGT is expected to find broad application in the field of haemostasis and thrombosis.

About the Author
Floris P. J. T. Rutjes was appointed full professor in synthetic organic chemistry at Radboud University Nijmegen in 1999. His research interests include the application of catalysis in the synthesis of biologically relevant molecules and natural products, and the development of new molecular diagnostic tools for application in life sciences. He is co-founder of the companies Chiralix and FutureChemistry, and received the Most Entrepreneurial Scientist of the Netherlands award in 2008.

Author: Floris P. J. T. Rutjes, Radboud Universiteit Nijmegen (The Netherlands), http://www.soc.science.ru.nl/

Title: Fluorogenic Peptide-Based Substrates for Monitoring Thrombin Activity
ChemMedChem, Permalink to the article: http://dx.doi.org/10.1002/cmdc.201100560

Floris P. J. T. Rutjes | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>