Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great mystery of a plant defence pathway unravelled

03.06.2013
Together with several partners, scientists from Wageningen UR (University & Research centre) have discovered that RLP-receptors located at the outside of plant cells and playing an important role in plant defence, join forces with other proteins present at the same location to warn the plant when a fungus attacks.

This finally answers a question that has been haunting several plant scientists around the world for many years. The findings provide new leads for breeding crops with an improved defence against diseases caused by pathogenic microbes.

Plants are constantly challenged by pathogens such as fungi and bacteria. They almost always succeed in warding off pathogens by using special receptors, either present at the outside or inside of the plant cell, to identify the pathogen.

The receptors located at the outside usually also have a domain that protrudes through the cell membrane into the cell. This is used to warn the cell and stimulate the plant cell to take action. This generally results in a ‘programmed cell death’, ensuring that the fungus, for example, can no longer enter the cell and absorb nutrients.

Although much is known about the defence system of plants, there are still quite some mysteries to be solved. For some time, for instance, we know about the existence of so-called RLK-receptors. These receptors are located at the cell membrane of the plant cells and have a domain on both the inside and the outside of the cell. Whenever they receive a signal on the outside - from a fungus, for example - the part on the inside of the cell (the kinase) activates the signal to mount a defence response against the invading fungus.

In addition to RLK-receptors there are also RLP-receptors. These are also located at the cell membrane, but they do not have a kinase domain on the inside of the cell to pass on signals. For over twenty years, scientists have been mystified as to how these receptors manage to warn the plant to enable it to protect itself against pathogens.

The first RLP-receptor was identified in tomato plants about 20 years ago. We now know that all plant species contain such RLPs. For example, tomato contains around 180 different RLPs. Scientists developed the hypothesis that RLP-receptors involved in defence against attacking microbes possibly work together with RLK-receptors to pass on signals, but such an RLK-receptor remained to be identified. After purifying an RLP-receptor complex from leaves of tomato plants, Wageningen UR scientists have now discovered that a number of RLP-receptors do indeed recruit an RLK-receptor, referred to as SOBIR1, in order to warn the cell for fungal attacks.

Switching off the gene for this RLK-receptor cause the RLP-receptors to be non-functional. The scientists have hereby shown that RLP-receptors cannot warn the cell without cooperating with SOBIR1 and their research results have been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

As all plant species use RLP-receptors to protect themselves against pathogens, and all contain a gene closely related to SOBIR1, this RLK-receptor is highly likely to be an essential and universal link in the defence system of plants. The discovery therefore provides many opportunities for further studies on this type of defence system. Once more is known about the essential links in plant defence systems, it will be easier to breed plants that are more resistant to pathogenic microbes, which in turn would lead to a reduced use of pesticides. The Wageningen UR scientists will now continue to study what exactly occurs in the plant cells once the SOBIR1 kinase sends out warning signals.

The research was performed by scientists from the Laboratory of Phytopathology, together with colleagues from Plant Research International (PRI), the Centre for BioSystems Genomics (CBSG) and the Sainsbury Laboratory in the UK. It was financed by the Centre for BioSystems Genomics (CBSG), the Netherlands Organisation for Scientific Research (NWO) and the Gatsby Charitable Foundation.

Notes for the editor
Publication
Liebrand, T et al., (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1220015110
Link to the article in PNAS
http://www.pnas.org/content/early/2013/05/22/1220015110.abstract.html?etoc
Images (can be used freely)
https://picasaweb.google.com/115915961286327465946/GreatMysteryInPlantDefenceU?authuser=0&feat=directlink
Contact
For more information you can contact Paulien Poelarends, communication department Plant Sciences Group, part of Wageningen UR. Paulien.poelarends@wur.nl / +31 317481292

The mission of Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Paulien Poelarends | Wageningen University
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>