Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great mystery of a plant defence pathway unravelled

03.06.2013
Together with several partners, scientists from Wageningen UR (University & Research centre) have discovered that RLP-receptors located at the outside of plant cells and playing an important role in plant defence, join forces with other proteins present at the same location to warn the plant when a fungus attacks.

This finally answers a question that has been haunting several plant scientists around the world for many years. The findings provide new leads for breeding crops with an improved defence against diseases caused by pathogenic microbes.

Plants are constantly challenged by pathogens such as fungi and bacteria. They almost always succeed in warding off pathogens by using special receptors, either present at the outside or inside of the plant cell, to identify the pathogen.

The receptors located at the outside usually also have a domain that protrudes through the cell membrane into the cell. This is used to warn the cell and stimulate the plant cell to take action. This generally results in a ‘programmed cell death’, ensuring that the fungus, for example, can no longer enter the cell and absorb nutrients.

Although much is known about the defence system of plants, there are still quite some mysteries to be solved. For some time, for instance, we know about the existence of so-called RLK-receptors. These receptors are located at the cell membrane of the plant cells and have a domain on both the inside and the outside of the cell. Whenever they receive a signal on the outside - from a fungus, for example - the part on the inside of the cell (the kinase) activates the signal to mount a defence response against the invading fungus.

In addition to RLK-receptors there are also RLP-receptors. These are also located at the cell membrane, but they do not have a kinase domain on the inside of the cell to pass on signals. For over twenty years, scientists have been mystified as to how these receptors manage to warn the plant to enable it to protect itself against pathogens.

The first RLP-receptor was identified in tomato plants about 20 years ago. We now know that all plant species contain such RLPs. For example, tomato contains around 180 different RLPs. Scientists developed the hypothesis that RLP-receptors involved in defence against attacking microbes possibly work together with RLK-receptors to pass on signals, but such an RLK-receptor remained to be identified. After purifying an RLP-receptor complex from leaves of tomato plants, Wageningen UR scientists have now discovered that a number of RLP-receptors do indeed recruit an RLK-receptor, referred to as SOBIR1, in order to warn the cell for fungal attacks.

Switching off the gene for this RLK-receptor cause the RLP-receptors to be non-functional. The scientists have hereby shown that RLP-receptors cannot warn the cell without cooperating with SOBIR1 and their research results have been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

As all plant species use RLP-receptors to protect themselves against pathogens, and all contain a gene closely related to SOBIR1, this RLK-receptor is highly likely to be an essential and universal link in the defence system of plants. The discovery therefore provides many opportunities for further studies on this type of defence system. Once more is known about the essential links in plant defence systems, it will be easier to breed plants that are more resistant to pathogenic microbes, which in turn would lead to a reduced use of pesticides. The Wageningen UR scientists will now continue to study what exactly occurs in the plant cells once the SOBIR1 kinase sends out warning signals.

The research was performed by scientists from the Laboratory of Phytopathology, together with colleagues from Plant Research International (PRI), the Centre for BioSystems Genomics (CBSG) and the Sainsbury Laboratory in the UK. It was financed by the Centre for BioSystems Genomics (CBSG), the Netherlands Organisation for Scientific Research (NWO) and the Gatsby Charitable Foundation.

Notes for the editor
Publication
Liebrand, T et al., (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1220015110
Link to the article in PNAS
http://www.pnas.org/content/early/2013/05/22/1220015110.abstract.html?etoc
Images (can be used freely)
https://picasaweb.google.com/115915961286327465946/GreatMysteryInPlantDefenceU?authuser=0&feat=directlink
Contact
For more information you can contact Paulien Poelarends, communication department Plant Sciences Group, part of Wageningen UR. Paulien.poelarends@wur.nl / +31 317481292

The mission of Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Paulien Poelarends | Wageningen University
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>