Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great mystery of a plant defence pathway unravelled

03.06.2013
Together with several partners, scientists from Wageningen UR (University & Research centre) have discovered that RLP-receptors located at the outside of plant cells and playing an important role in plant defence, join forces with other proteins present at the same location to warn the plant when a fungus attacks.

This finally answers a question that has been haunting several plant scientists around the world for many years. The findings provide new leads for breeding crops with an improved defence against diseases caused by pathogenic microbes.

Plants are constantly challenged by pathogens such as fungi and bacteria. They almost always succeed in warding off pathogens by using special receptors, either present at the outside or inside of the plant cell, to identify the pathogen.

The receptors located at the outside usually also have a domain that protrudes through the cell membrane into the cell. This is used to warn the cell and stimulate the plant cell to take action. This generally results in a ‘programmed cell death’, ensuring that the fungus, for example, can no longer enter the cell and absorb nutrients.

Although much is known about the defence system of plants, there are still quite some mysteries to be solved. For some time, for instance, we know about the existence of so-called RLK-receptors. These receptors are located at the cell membrane of the plant cells and have a domain on both the inside and the outside of the cell. Whenever they receive a signal on the outside - from a fungus, for example - the part on the inside of the cell (the kinase) activates the signal to mount a defence response against the invading fungus.

In addition to RLK-receptors there are also RLP-receptors. These are also located at the cell membrane, but they do not have a kinase domain on the inside of the cell to pass on signals. For over twenty years, scientists have been mystified as to how these receptors manage to warn the plant to enable it to protect itself against pathogens.

The first RLP-receptor was identified in tomato plants about 20 years ago. We now know that all plant species contain such RLPs. For example, tomato contains around 180 different RLPs. Scientists developed the hypothesis that RLP-receptors involved in defence against attacking microbes possibly work together with RLK-receptors to pass on signals, but such an RLK-receptor remained to be identified. After purifying an RLP-receptor complex from leaves of tomato plants, Wageningen UR scientists have now discovered that a number of RLP-receptors do indeed recruit an RLK-receptor, referred to as SOBIR1, in order to warn the cell for fungal attacks.

Switching off the gene for this RLK-receptor cause the RLP-receptors to be non-functional. The scientists have hereby shown that RLP-receptors cannot warn the cell without cooperating with SOBIR1 and their research results have been published in the scientific journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

As all plant species use RLP-receptors to protect themselves against pathogens, and all contain a gene closely related to SOBIR1, this RLK-receptor is highly likely to be an essential and universal link in the defence system of plants. The discovery therefore provides many opportunities for further studies on this type of defence system. Once more is known about the essential links in plant defence systems, it will be easier to breed plants that are more resistant to pathogenic microbes, which in turn would lead to a reduced use of pesticides. The Wageningen UR scientists will now continue to study what exactly occurs in the plant cells once the SOBIR1 kinase sends out warning signals.

The research was performed by scientists from the Laboratory of Phytopathology, together with colleagues from Plant Research International (PRI), the Centre for BioSystems Genomics (CBSG) and the Sainsbury Laboratory in the UK. It was financed by the Centre for BioSystems Genomics (CBSG), the Netherlands Organisation for Scientific Research (NWO) and the Gatsby Charitable Foundation.

Notes for the editor
Publication
Liebrand, T et al., (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1220015110
Link to the article in PNAS
http://www.pnas.org/content/early/2013/05/22/1220015110.abstract.html?etoc
Images (can be used freely)
https://picasaweb.google.com/115915961286327465946/GreatMysteryInPlantDefenceU?authuser=0&feat=directlink
Contact
For more information you can contact Paulien Poelarends, communication department Plant Sciences Group, part of Wageningen UR. Paulien.poelarends@wur.nl / +31 317481292

The mission of Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes – both specialised and applied – have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 40 locations (in the Netherlands, Brazil and China), 6500 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

Paulien Poelarends | Wageningen University
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>