Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Balls of Evolution! Bacteria Cooperate in New Way

06.12.2010
University of Massachusetts Amherst microbiologists Derek Lovley, Zarath Summers and colleagues report in today’s issue of Science that they have discovered a new cooperative behavior in anaerobic bacteria, known as interspecies electron transfer that could have important implications for the global carbon cycle and bioenergy.

The scientists found that microorganisms of different species, in this case two Geobacter species, can form direct electrical connections and pass an electric current from one microbe to the other. By cooperating in this way the two microbes can consume food that neither of them could use on their own.

The cell aggregates or “great balls of evolution” that Summers evolved in the laboratory look very much like those found in nature which are involved in degrading organic matter into the greenhouse gases, carbon dioxide and methane. Conversion of wastes to methane by microbial aggregates is an increasingly popular method for producing natural gas as a renewable energy source.

Others can be found consuming methane from vents at the bottom of the ocean. In both cases, investigators have been puzzled for years about how these aggregates function, because a 40-year-old interspecies hydrogen transfer paradigm did not seem to fit observations. Now, the mystery appears to be solved.

As Lovley, the principal investigator, explains, “We placed the microbes under conditions in which they had to work together in order to survive and grow using the alcohol we gave them as an energy source. They’re the ultimate drinking buddies, collaborating to consume ethanol.” With support from the Genomic Science Program of the U.S. Department of Energy, his lab has been exploiting the ability of microorganisms to adapt to novel conditions and developing microbes for practical applications.

It’s been known since the 1960s that microorganisms can indirectly exchange electrons by the process known as interspecies hydrogen transfer. In it, one microbe produces hydrogen that another microbe then consumes. It was experiments carried out by doctoral candidate Summers to explore this phenomenon further that led to discovery of the new direct transfer process.

To begin, Summers put two species of Geobacter together under conditions expected to favor hydrogen-sharing interactions. At first, the cells did cooperate to consume the alcohol by sharing hydrogen. Over time, they also started clumping together and transforming the culture from one of the dispersed microscopic cells, invisible to the naked eye, to a collection of complex multi-cellular structures, millimeters in diameter.

Resisting her lab mates’ urgings to shake the cultures and break up the unexpected cell clumps, Summers continued to allow the spheres to grow. Now they were exhibiting a deep red color due to the presence of iron-containing proteins known as cytochromes. When observed with an electron microscope, they had clearly developed an intricate structure with a series of channels, presumably to help nutrients enter. They had also established completely new electric connections that permitted them to directly share electrons.

“The direct electron transfer is much more efficient and they consume alcohol much faster this way,” Summers points out. Sequencing the DNA in the big red balls revealed the secret to this electrical connection: a mutation in one of the Geobacter species had caused it to make much more of a cytochrome known as OmcS. Previous studies in Lovley’s lab had shown that OmcS lines up along Geobacter’s electrically conductive filaments known as microbial nanowires.

“This turn of events suggested that the cytochrome was key to the electrical connection between the cells” says Summers. This was confirmed in subsequent experiments with genetically manipulated microbes. When the researchers deleted genes for the cytochrome or the nanowires, the microbes did not form the red balls and never effectively used their alcohol fuel. Lovley, Summers and colleagues had thus pinpointed the source of the microbes’ new behavior.

Further experiments showed that if the mutation was introduced before putting the two Geobacters together, they rapidly formed the balls and consumed alcohol. Deleting a gene that would be necessary for the cells to exchange hydrogen also hastened ball formation, demonstrating that interspecies hydrogen transfer was not an important factor. “This is a clear case of life evolving to function more effectively in a new environment” says Lovley.

“We’re guessing that many types of natural aggregates rely on interspecies electron transfer” said Lovley. “We already have some good preliminary evidence for this with some more complex natural systems. With DNA sequencing we can determine how the microbes evolve when challenged to do better. We can learn a lot about the basic mechanisms of the process of interest,” he adds.

Derek Lovley
413-545-9651
dlovley@microbio.umass.edu

Derek Lovley | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>