Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Balls of Evolution! Bacteria Cooperate in New Way

06.12.2010
University of Massachusetts Amherst microbiologists Derek Lovley, Zarath Summers and colleagues report in today’s issue of Science that they have discovered a new cooperative behavior in anaerobic bacteria, known as interspecies electron transfer that could have important implications for the global carbon cycle and bioenergy.

The scientists found that microorganisms of different species, in this case two Geobacter species, can form direct electrical connections and pass an electric current from one microbe to the other. By cooperating in this way the two microbes can consume food that neither of them could use on their own.

The cell aggregates or “great balls of evolution” that Summers evolved in the laboratory look very much like those found in nature which are involved in degrading organic matter into the greenhouse gases, carbon dioxide and methane. Conversion of wastes to methane by microbial aggregates is an increasingly popular method for producing natural gas as a renewable energy source.

Others can be found consuming methane from vents at the bottom of the ocean. In both cases, investigators have been puzzled for years about how these aggregates function, because a 40-year-old interspecies hydrogen transfer paradigm did not seem to fit observations. Now, the mystery appears to be solved.

As Lovley, the principal investigator, explains, “We placed the microbes under conditions in which they had to work together in order to survive and grow using the alcohol we gave them as an energy source. They’re the ultimate drinking buddies, collaborating to consume ethanol.” With support from the Genomic Science Program of the U.S. Department of Energy, his lab has been exploiting the ability of microorganisms to adapt to novel conditions and developing microbes for practical applications.

It’s been known since the 1960s that microorganisms can indirectly exchange electrons by the process known as interspecies hydrogen transfer. In it, one microbe produces hydrogen that another microbe then consumes. It was experiments carried out by doctoral candidate Summers to explore this phenomenon further that led to discovery of the new direct transfer process.

To begin, Summers put two species of Geobacter together under conditions expected to favor hydrogen-sharing interactions. At first, the cells did cooperate to consume the alcohol by sharing hydrogen. Over time, they also started clumping together and transforming the culture from one of the dispersed microscopic cells, invisible to the naked eye, to a collection of complex multi-cellular structures, millimeters in diameter.

Resisting her lab mates’ urgings to shake the cultures and break up the unexpected cell clumps, Summers continued to allow the spheres to grow. Now they were exhibiting a deep red color due to the presence of iron-containing proteins known as cytochromes. When observed with an electron microscope, they had clearly developed an intricate structure with a series of channels, presumably to help nutrients enter. They had also established completely new electric connections that permitted them to directly share electrons.

“The direct electron transfer is much more efficient and they consume alcohol much faster this way,” Summers points out. Sequencing the DNA in the big red balls revealed the secret to this electrical connection: a mutation in one of the Geobacter species had caused it to make much more of a cytochrome known as OmcS. Previous studies in Lovley’s lab had shown that OmcS lines up along Geobacter’s electrically conductive filaments known as microbial nanowires.

“This turn of events suggested that the cytochrome was key to the electrical connection between the cells” says Summers. This was confirmed in subsequent experiments with genetically manipulated microbes. When the researchers deleted genes for the cytochrome or the nanowires, the microbes did not form the red balls and never effectively used their alcohol fuel. Lovley, Summers and colleagues had thus pinpointed the source of the microbes’ new behavior.

Further experiments showed that if the mutation was introduced before putting the two Geobacters together, they rapidly formed the balls and consumed alcohol. Deleting a gene that would be necessary for the cells to exchange hydrogen also hastened ball formation, demonstrating that interspecies hydrogen transfer was not an important factor. “This is a clear case of life evolving to function more effectively in a new environment” says Lovley.

“We’re guessing that many types of natural aggregates rely on interspecies electron transfer” said Lovley. “We already have some good preliminary evidence for this with some more complex natural systems. With DNA sequencing we can determine how the microbes evolve when challenged to do better. We can learn a lot about the basic mechanisms of the process of interest,” he adds.

Derek Lovley
413-545-9651
dlovley@microbio.umass.edu

Derek Lovley | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>