Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Balls of Evolution! Bacteria Cooperate in New Way

06.12.2010
University of Massachusetts Amherst microbiologists Derek Lovley, Zarath Summers and colleagues report in today’s issue of Science that they have discovered a new cooperative behavior in anaerobic bacteria, known as interspecies electron transfer that could have important implications for the global carbon cycle and bioenergy.

The scientists found that microorganisms of different species, in this case two Geobacter species, can form direct electrical connections and pass an electric current from one microbe to the other. By cooperating in this way the two microbes can consume food that neither of them could use on their own.

The cell aggregates or “great balls of evolution” that Summers evolved in the laboratory look very much like those found in nature which are involved in degrading organic matter into the greenhouse gases, carbon dioxide and methane. Conversion of wastes to methane by microbial aggregates is an increasingly popular method for producing natural gas as a renewable energy source.

Others can be found consuming methane from vents at the bottom of the ocean. In both cases, investigators have been puzzled for years about how these aggregates function, because a 40-year-old interspecies hydrogen transfer paradigm did not seem to fit observations. Now, the mystery appears to be solved.

As Lovley, the principal investigator, explains, “We placed the microbes under conditions in which they had to work together in order to survive and grow using the alcohol we gave them as an energy source. They’re the ultimate drinking buddies, collaborating to consume ethanol.” With support from the Genomic Science Program of the U.S. Department of Energy, his lab has been exploiting the ability of microorganisms to adapt to novel conditions and developing microbes for practical applications.

It’s been known since the 1960s that microorganisms can indirectly exchange electrons by the process known as interspecies hydrogen transfer. In it, one microbe produces hydrogen that another microbe then consumes. It was experiments carried out by doctoral candidate Summers to explore this phenomenon further that led to discovery of the new direct transfer process.

To begin, Summers put two species of Geobacter together under conditions expected to favor hydrogen-sharing interactions. At first, the cells did cooperate to consume the alcohol by sharing hydrogen. Over time, they also started clumping together and transforming the culture from one of the dispersed microscopic cells, invisible to the naked eye, to a collection of complex multi-cellular structures, millimeters in diameter.

Resisting her lab mates’ urgings to shake the cultures and break up the unexpected cell clumps, Summers continued to allow the spheres to grow. Now they were exhibiting a deep red color due to the presence of iron-containing proteins known as cytochromes. When observed with an electron microscope, they had clearly developed an intricate structure with a series of channels, presumably to help nutrients enter. They had also established completely new electric connections that permitted them to directly share electrons.

“The direct electron transfer is much more efficient and they consume alcohol much faster this way,” Summers points out. Sequencing the DNA in the big red balls revealed the secret to this electrical connection: a mutation in one of the Geobacter species had caused it to make much more of a cytochrome known as OmcS. Previous studies in Lovley’s lab had shown that OmcS lines up along Geobacter’s electrically conductive filaments known as microbial nanowires.

“This turn of events suggested that the cytochrome was key to the electrical connection between the cells” says Summers. This was confirmed in subsequent experiments with genetically manipulated microbes. When the researchers deleted genes for the cytochrome or the nanowires, the microbes did not form the red balls and never effectively used their alcohol fuel. Lovley, Summers and colleagues had thus pinpointed the source of the microbes’ new behavior.

Further experiments showed that if the mutation was introduced before putting the two Geobacters together, they rapidly formed the balls and consumed alcohol. Deleting a gene that would be necessary for the cells to exchange hydrogen also hastened ball formation, demonstrating that interspecies hydrogen transfer was not an important factor. “This is a clear case of life evolving to function more effectively in a new environment” says Lovley.

“We’re guessing that many types of natural aggregates rely on interspecies electron transfer” said Lovley. “We already have some good preliminary evidence for this with some more complex natural systems. With DNA sequencing we can determine how the microbes evolve when challenged to do better. We can learn a lot about the basic mechanisms of the process of interest,” he adds.

Derek Lovley
413-545-9651
dlovley@microbio.umass.edu

Derek Lovley | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>