Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greasing Molecular Machinery with Protons

12.04.2012
When designing the tiniest of possible machines, scientists have had far more success in creating molecular-size brakes than accelerators. But a team at the University of South Carolina has figured out how to really hit the gas pedal.

Reporting in the Journal of the American Chemical Society, they use what they call 'proton grease' to make a molecular rotor spin faster – by a factor of ten million. The advance is a significant signpost on the road toward functional synthetic molecular machines, said Ken Shimizu, lead author and professor in the department of chemistry and biochemistry in the College of Arts and Sciences at USC.

The team constructed their rotor by combining quinoline and succinimide subunits. At first blush it might look like rotation in the resulting molecule would be essentially unrestricted, but the appearance is deceiving. The partial charge on the carbonyls has highly unfavorable overlap with the quinoline nitrogen when the molecule is in a planar transition state.

But when the nitrogen is protonated, the planar rotamer is stabilized – leading to a huge increase in the rotational rate.

"We designed it to have more favorable overlap after protonation, so we expected it to speed up," said Shimizu. "But we never anticipated the magnitude of the increase – we were surprised by how well it worked, which is a rare thing to say."

The barrier to rotation dropped from about 22 kcal/mol to 13 kcal/mol upon titration with acid. The increase in rotation speed was so dramatic, covering seven orders of magnitude, that the team had to cobble together two different measurement techniques – one for fast rotation, and another for slow.

And as they show in their research article, the speed-up is reversible: addition of base restored the barrier to rotation.

The field of molecular devices is in its infancy, but the possibilities are tantalizing. "We're kind of making cogs right now, but we're moving toward being able to make more complex devices," said Shimizu. "People are imagining all sorts of electronic and mechanical devices based on single molecules, and we're building up this toolbox to be able to create machines and devices on the molecular scale."

Despite coming up with the evocative term 'proton grease,' Shimizu recognizes the name carries potential baggage as well. "It makes it more accessible to use these analogies about brakes and grease and things like that – but it's a little bit dangerous too," he said.

"When people talk about in these molecular machines, they often assume that you can take an engine, for example, and just scale it down to a molecular size. And conceptually you can, but the actual physics behind that falls apart," said Shimizu. "We don't have friction at that scale, for example."

"But that's actually the most exciting part, too," he added. "When you start making things on that scale, the rules are completely different."

"By controlling motion on the molecular level, people imagine that you could make switches, memory, transformers – all sorts of electronic and mechanical devices as single molecules."

Steven Powell | Newswise Science News
Further information:
http://www.sc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>