Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greasing Molecular Machinery with Protons

12.04.2012
When designing the tiniest of possible machines, scientists have had far more success in creating molecular-size brakes than accelerators. But a team at the University of South Carolina has figured out how to really hit the gas pedal.

Reporting in the Journal of the American Chemical Society, they use what they call 'proton grease' to make a molecular rotor spin faster – by a factor of ten million. The advance is a significant signpost on the road toward functional synthetic molecular machines, said Ken Shimizu, lead author and professor in the department of chemistry and biochemistry in the College of Arts and Sciences at USC.

The team constructed their rotor by combining quinoline and succinimide subunits. At first blush it might look like rotation in the resulting molecule would be essentially unrestricted, but the appearance is deceiving. The partial charge on the carbonyls has highly unfavorable overlap with the quinoline nitrogen when the molecule is in a planar transition state.

But when the nitrogen is protonated, the planar rotamer is stabilized – leading to a huge increase in the rotational rate.

"We designed it to have more favorable overlap after protonation, so we expected it to speed up," said Shimizu. "But we never anticipated the magnitude of the increase – we were surprised by how well it worked, which is a rare thing to say."

The barrier to rotation dropped from about 22 kcal/mol to 13 kcal/mol upon titration with acid. The increase in rotation speed was so dramatic, covering seven orders of magnitude, that the team had to cobble together two different measurement techniques – one for fast rotation, and another for slow.

And as they show in their research article, the speed-up is reversible: addition of base restored the barrier to rotation.

The field of molecular devices is in its infancy, but the possibilities are tantalizing. "We're kind of making cogs right now, but we're moving toward being able to make more complex devices," said Shimizu. "People are imagining all sorts of electronic and mechanical devices based on single molecules, and we're building up this toolbox to be able to create machines and devices on the molecular scale."

Despite coming up with the evocative term 'proton grease,' Shimizu recognizes the name carries potential baggage as well. "It makes it more accessible to use these analogies about brakes and grease and things like that – but it's a little bit dangerous too," he said.

"When people talk about in these molecular machines, they often assume that you can take an engine, for example, and just scale it down to a molecular size. And conceptually you can, but the actual physics behind that falls apart," said Shimizu. "We don't have friction at that scale, for example."

"But that's actually the most exciting part, too," he added. "When you start making things on that scale, the rules are completely different."

"By controlling motion on the molecular level, people imagine that you could make switches, memory, transformers – all sorts of electronic and mechanical devices as single molecules."

Steven Powell | Newswise Science News
Further information:
http://www.sc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>