Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Rainbow

27.01.2012
Superhydrophobic graphene surfaces mimic the properties of butterfly wings and rose petals

Butterfly wings, rose petals and many other natural surfaces repell water strongly; they are superhydrophobic.


Such surfaces have a hierarchical structure on the micrometer or nanometer scale. Their attractive properties and spectacular iridescent colors have triggered a group led by Hong-Bo Sun of Jilin University to prepare a superhydrophobic graphene surface with properties comparable to its natural counterparts. They report their findings in Chemistry – An Asian Journal.

The team from Changchun, China, split a 355 nm laser beam into two branches and guided them to interfere directly on the surface of a graphene oxide film. This method fabricates a periodic microscale grating structure while simultaneously removing the oxygen from the graphene oxide film.

The resulting superhydrophobic film showed colorful iridescence and unique high adhesion. Water droplets were repelled to show contact angles of up to almost 160° depending on laser power.

"Such surfaces could be used for applications in water transport and microfluidic devices," says Sun, who demonstrated how the wettability of graphene can be controlled.

Author: Hong-Bo Sun, Jilin University, Changchun (China), http://www.lasun-jlu.cn/people.php

Title: Biomimetic Graphene Surfaces with Superhydrophobicity and Iridescence
Chemistry - An Asian Journal, Permalink to the article: http://dx.doi.org/10.1002/asia.201100882

Hong-Bo Sun | Wiley-VCH
Further information:
http://www.wiley-vch.de

Further reports about: Changchun Rainbow Lake Sun graphene graphene oxide microfluidic device

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>