Graphene ‘onion rings’ have delicious potential

This set of hexagonal graphene “onion rings” was grown at Rice University. The rings represent the first example of graphene nanoribbons grown from the bottom up – that is, atom by atom – via chemical vapor deposition. (Credit: Tour Group/Rice University)

Concentric hexagons of graphene grown in a furnace at Rice University represent the first time anyone has synthesized graphene nanoribbons on metal from the bottom up — atom by atom.

As seen under a microscope, the layers brought onions to mind, said Rice chemist James Tour, until a colleague suggested flat graphene could never be like an onion.

“So I said, ‘OK, these are onion rings,’” Tour quipped.

The name stuck, and the remarkable rings that chemists marveled were even possible are described in a new paper in the Journal of the American Chemical Society.

The challenge was to figure out how such a thing could grow, Tour said. Usually, graphene grown in a hot furnace by chemical vapor deposition starts on a seed — a speck of dust or a bump on a copper or other metallic surface. One carbon atom latches onto the seed in a process called nucleation and others follow to form the familiar chicken-wire grid.

Experiments in Tour’s lab to see how graphene grows under high pressure and in a hydrogen-rich environment produced the first rings. Under those conditions, Tour, Rice theoretical physicist Boris Yakobson and their teams found that the entire edge of a fast-growing sheet of graphene becomes a nucleation site when hydrogenated. The edge lets carbon atoms get under the graphene skin, where they start a new sheet.

But because the top graphene grows so fast, it eventually halts the flow of carbon atoms to the new sheet underneath. The bottom stops growing, leaving a graphene ring. Then the process repeats.

“The mechanism relies on that top layer to stop carbon from reaching the bottom so easily,” Tour said. “What we get are a multiple of single crystals growing one on top of the other.”

The Tour lab pioneered the bulk manufacture of single-atom-thick graphene nanoribbons in 2009 with the discovery that carbon nanotubes could be chemically “unzipped” into long, thin sheets. Nanoribbons are being studied for use in batteries and advanced electronics and as heat sinks.

“Usually you make a ribbon by taking a large thing and cutting it down,” Tour said. “But if you can grow a ribbon from the bottom up, you could have control of the edges.” The atomic configuration at the edge helps determine graphene’s electrical properties. The edges of hexagonal graphene onion rings are zigzags, which make the rings metallic.

“The big news here,” he said, “is that we can change relative pressures of the growth environment of hydrogen versus carbon and get entirely new structures. This is dramatically different from regular graphene.”

Graduate student Zheng Yan, a member of Tour’s lab and lead author of the paper, discovered the new route to nanoribbons while experimenting with graphene growth under hydrogen pressurized to varying degrees. The sweet spot for rings was at 500 Torr, he said.

Further testing found the microscopic rings formed underneath and not on top of the sheet, and Yakobson’s lab confirmed the growth mechanism through first-principle calculations. Yan also determined the top sheet of graphene could be stripped away with argon plasma, leaving stand-alone rings.

The width of the rings, which ranged from 10 to 450 nanometers, also affects their electronic properties, so finding a way to control it will be one focus of continued research, Tour said. “If we can consistently make 10-nanometer ribbons, we can begin to gate them and turn them into low-voltage transistors,” he said. They may also be suitable for lithium storage for advanced lithium ion batteries, he said.

Co-authors of the paper are Rice graduate students Yuanyue Liu, Zhiwei Peng, Changsheng Xiang, Abdul-Rahman Raji and Errol Samuel; postdoctoral researchers Jian Lin, Gunuk Wang and Haiqing Zhou; Rice alumna Elvira Pembroke; and Professor Ting Yu of Nanyang Technological University. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice. Yakobson is the Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry.

The Singapore National Research Foundation, the Office of Naval Research, the Lockheed Martin LANCER IV program and the Air Force Office of Scientific Research supported the work. Calculations were performed on the National Science Foundation-supported DaVinCI supercomputer at Rice, the National Institute for Computational Sciences’ Kraken and the National Energy Research Scientific Computing Center’s Hopper.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/ja403915m

Media Contact

David Ruth EurekAlert!

More Information:

http://www.rice.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors