Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


GPS in the head? RUB scientist deciphers frequency of cell activity

Rhythmic activity of neurons to code position in space / Journal of Neuroscience: RUB scientist deciphers frequency of cell activity

Prof. Dr. Motoharu Yoshida (Ruhr-Universität Bochum, RUB) and colleagues from Boston University investigated how the rhythmic activity of nerve cells supports spatial navigation.

The research scientists showed that cells in the entorhinal cortex, which is important for spatial navigation, oscillate with individual frequencies. These frequencies depend on the position of the cells within the entorhinal cortex. “Up to now people believed that the frequency is modulated by the interaction with neurons in other brain regions”, says Yoshida. “However, our data indicate that this may not be the case. The frequency could be fixed for each cell. We may need new models to describe the contribution of rhythmic activity to spatial navigation.” The researchers report in the Journal of Neuroscience.

Rhythmic brains find their way

„The brain seems to represent the environment like a map with perfect distances and angles“, explains Yoshida. “However, we are not robots with GPS systems in our head. But the rhythmic activity of the neurons in the entorhinal cortex seems to create a kind of map.” The activity of individual neurons in this brain region represents different positions in space. If an animal is in a certain location, a certain neuron fires. The rhythmic activity of each cell may enable us to code a set of positions, which form a regular grid. Computer simulations of previous studies suggested that signals from cells in other brain regions influence the rhythmic activity of the entorhinal neurons. Using electrophysiological recordings in rats and computer simulations, Yoshida and his colleagues examined the nature of this influence.

Expressing the cellular rhythm in numbers

In order to simulate the input signals from other cells, Yoshida and his colleagues varied the voltage at the cell membrane (membrane potential). A change of the membrane potential from the resting state to more positive values thereby resembled an input signal from another cell. The membrane potential of the cells in the entorhinal cortex is not constant, but increases and decreases periodically; it oscillates. The scientists determined how fast the membrane potential changed (frequency) and how large the differences in these changes were (amplitude), when they shifted the mean membrane potential around which the potential oscillated.

Position determines the frequency

In the resting state, the membrane potential oscillations of the entorhinal cells were weak and in a broad frequency range. If the membrane potential was shifted to more positive values, thus mimicking the input of another cell, the oscillations became stronger. Additionally, the membrane potential now fluctuated with a distinct frequency, which was dependent on the position of the cell within the entorhinal cortex. Cells in the upper portion of this brain region showed oscillations with higher frequency than cells in the lower portion. However, the frequency was independent of further changes in membrane potential and thus largely independent of input signals from other cells.

Bibliographic record

Yoshida, M., Giocomo, L.M., Boardman, I., Hasselmo, M.E. (2011) Frequency of Subthreshold Oscillations at Different Membrane Potential Voltages in Neurons at Different Anatomical Positions on the Dorsoventral Axis in the Rat Medial Entorhinal Cortex, The Journal of Neuroscience, 31, 12683–12694, doi: 10.1523/JNEUROSCI.1654-11.2011

Further information

Prof. Dr. Motoharu Yoshida, Neural Dynamics Lab, Fakultät für Psychologie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-27138

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>