Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gotcha! Microbial “methane eaters” use gas bubbles to rise from the seafloor into the water column

30.07.2015

Novel bubble catcher provides proof of a so far unknown transport process, with potential implications for the reduction of the greenhouse gas methane in the marine environment

To improve our knowledge on the role microorganisms play in the process of regulating methane in the sea, scientists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) developed a novel instrument to detect the transport of microorganisms via methane gas bubbles ascending from the seafloor.


Bubble funnel of the IOW bubble catchers above one of the methane seeps of the research area

University of California


IOW bubble catchers in action at the coast of California: Project leader Oliver Schmale (r.) securing water samples together with Jens Schneider v. Deimling (GEOMAR, left) and Katrin Kießlich (IOW)

IOW

With the successful deployment of this bubble catcher, they provided first-time proof that together with the gas bubbles, methane-consuming bacteria can get from the sediment into the water column. These so called methanotrophic bacteria play an important role in the reduction of the methane fluxes from the ocean to the atmosphere. Thus, they influence the climate on earth, as methane is a highly efficient greenhouse gas.

One of the major goals in current environmental research is to understand how the greenhouse gas methane finds its way into the atmosphere and which processes can affect this flux. Oceanographers, too, put a focus of their investigations on marine sources of methane all over the world oceans. Examples of these sources are subsea mud volcanoes, cold hydrocarbon seeps and sediments rich in organic matter from coastal seas like the Baltic Sea.

Microorganisms are adapted to this comprehensive and versatile supply: within the water column, mainly methane-oxidizing bacteria are using methane as a source of energy and carbon, while at the seafloor mainly methanotrophic archaea assume this part. Both groups are transforming the methane into carbonate and biomass or carbon dioxide – which in comparison with methane is a less potent greenhouse gas. This process, in general, prevents seafloor-borne methane from ascending to the sea surface and into the atmosphere.

This microbial methane filter does no longer function once the methane seepage becomes so intense that the gas is liberated in form of gas bubbles from the seafloor. Because of a high velocity of the bubbles, methane will then pass the zone where the methane-consuming microorganisms live too quickly. With the novel bubble catcher from Rostock the scientists investigated whether methanotrophic bacteria from the sediment can participate in this upward shuttle and the surrounding water continuously gets inoculated by these bacteria.

It is known from other aquatic environments – like for example groundwater – that bubbles can transport microorganisms on their surface. But the bubble-mediated transport between sediment and water column was left unobserved up to now. To provide proof of such a process, however, is not easily done as the bubbles and the attached microorganisms have to be caught directly above the seep without contamination.

The scientists from the IOW together with their colleagues from the GEOMAR Institute in Kiel and the University of California succeeded with a pilot study off the coast of California above a natural seep of methane in catching the emerging bubbles by means of a cylinder filled with artificial sterile sea water. Subsequent microscopic analyses (CARD-FISH) revealed that the bubbles were accompanied by methane oxidizing bacteria.

Oliver Schmale: „We know now that the gas bubbles transport these bacteria from the sediment into the water column. Whether the organisms stay active in their new surrounding and thus can reduce the transport of this greenhouse gas into the atmosphere, must be clarified by further studies.”

Financed by the German Science Foundation (DFG), the investigations and results described here were recently published in the journal Continental Shelf Research: Schmale, O., I. Leifer, J. S. v. Deimling, C. Stolle, S. Krause, K. Kießlich, A. Frahm and T. Treude (2015). Bubble transport mechanism: indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Cont. Shelf Res. 103: 70-78, doi:10.1016/j.csr.2015.04.022

*Contact:
Dr. Oliver Schmale, Department Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 305, oliver.schmale@io-warnemuende.de

Dr. Barbara Hentzsch, Press Officer, Leibniz Institute for Baltic Sea Research Warnemünde, phone : +49 381 5197 102, barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>