Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gotcha! Microbial “methane eaters” use gas bubbles to rise from the seafloor into the water column

30.07.2015

Novel bubble catcher provides proof of a so far unknown transport process, with potential implications for the reduction of the greenhouse gas methane in the marine environment

To improve our knowledge on the role microorganisms play in the process of regulating methane in the sea, scientists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) developed a novel instrument to detect the transport of microorganisms via methane gas bubbles ascending from the seafloor.


Bubble funnel of the IOW bubble catchers above one of the methane seeps of the research area

University of California


IOW bubble catchers in action at the coast of California: Project leader Oliver Schmale (r.) securing water samples together with Jens Schneider v. Deimling (GEOMAR, left) and Katrin Kießlich (IOW)

IOW

With the successful deployment of this bubble catcher, they provided first-time proof that together with the gas bubbles, methane-consuming bacteria can get from the sediment into the water column. These so called methanotrophic bacteria play an important role in the reduction of the methane fluxes from the ocean to the atmosphere. Thus, they influence the climate on earth, as methane is a highly efficient greenhouse gas.

One of the major goals in current environmental research is to understand how the greenhouse gas methane finds its way into the atmosphere and which processes can affect this flux. Oceanographers, too, put a focus of their investigations on marine sources of methane all over the world oceans. Examples of these sources are subsea mud volcanoes, cold hydrocarbon seeps and sediments rich in organic matter from coastal seas like the Baltic Sea.

Microorganisms are adapted to this comprehensive and versatile supply: within the water column, mainly methane-oxidizing bacteria are using methane as a source of energy and carbon, while at the seafloor mainly methanotrophic archaea assume this part. Both groups are transforming the methane into carbonate and biomass or carbon dioxide – which in comparison with methane is a less potent greenhouse gas. This process, in general, prevents seafloor-borne methane from ascending to the sea surface and into the atmosphere.

This microbial methane filter does no longer function once the methane seepage becomes so intense that the gas is liberated in form of gas bubbles from the seafloor. Because of a high velocity of the bubbles, methane will then pass the zone where the methane-consuming microorganisms live too quickly. With the novel bubble catcher from Rostock the scientists investigated whether methanotrophic bacteria from the sediment can participate in this upward shuttle and the surrounding water continuously gets inoculated by these bacteria.

It is known from other aquatic environments – like for example groundwater – that bubbles can transport microorganisms on their surface. But the bubble-mediated transport between sediment and water column was left unobserved up to now. To provide proof of such a process, however, is not easily done as the bubbles and the attached microorganisms have to be caught directly above the seep without contamination.

The scientists from the IOW together with their colleagues from the GEOMAR Institute in Kiel and the University of California succeeded with a pilot study off the coast of California above a natural seep of methane in catching the emerging bubbles by means of a cylinder filled with artificial sterile sea water. Subsequent microscopic analyses (CARD-FISH) revealed that the bubbles were accompanied by methane oxidizing bacteria.

Oliver Schmale: „We know now that the gas bubbles transport these bacteria from the sediment into the water column. Whether the organisms stay active in their new surrounding and thus can reduce the transport of this greenhouse gas into the atmosphere, must be clarified by further studies.”

Financed by the German Science Foundation (DFG), the investigations and results described here were recently published in the journal Continental Shelf Research: Schmale, O., I. Leifer, J. S. v. Deimling, C. Stolle, S. Krause, K. Kießlich, A. Frahm and T. Treude (2015). Bubble transport mechanism: indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Cont. Shelf Res. 103: 70-78, doi:10.1016/j.csr.2015.04.022

*Contact:
Dr. Oliver Schmale, Department Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, phone: +49 381 5197 305, oliver.schmale@io-warnemuende.de

Dr. Barbara Hentzsch, Press Officer, Leibniz Institute for Baltic Sea Research Warnemünde, phone : +49 381 5197 102, barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>