Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gorilla study gives clues to human language development

17.10.2008
A new University of Sussex study provides evidence that gorilla communication is linked to the left hemisphere of the brain - just as it is in humans.

Psychologist Dr Gillian Sebestyen Forrester developed a new method of analysing the behaviour of gorillas in captivity and found there was a right-handed bias for actions that also involved head and mouth movements. The right side of the body is controlled by the left hemisphere of the brain, which is also the location for language development.

The findings could provide major clues as to how language developed in humans. Dr Sebestyen Forrester says: "We shared 23 million years of evolution with great apes and then diverged approximately six million years ago. Gorillas have highly-complex forms of non-verbal communication. I think we are looking back at what sort of communication skills we may have once had."

Previous studies by other researchers have found that chimpanzees show a right-handed preference for manual tasks. But Dr Sebestyn Forrester's research is the first to indicate a link between right-handedness and communication in apes.

The key to her findings, published Animal Behaviour, is the development of a detailed method for observing animals. "I have moved away from just studying visual communication signals of gorillas to looking for a method to capture, code and analyse these signals," she says. "For example, instead of subjectively labelling a behaviour as aggressive, I break down the behaviour into a sequence of stages based on eye gaze, facial expression and physical action. And I look for recurrent patterns within social context."

Dr Sebestyen Forrester carried out the research at Port Lympne Wild Animal Park in Kent, where there is a large biological family group of gorillas living in an enclosure modelled on their natural wild habitat. She focussed her attention on one adult female, 13-year-old Foufou, her infant son, M'Passa, and their social network. Two cameras were used to capture Foufou's every movement and expression as she interacted with the group.

Dr Sebestyen Forrester says: "Apes, like humans, use a range of nonverbal communicative social skills, such as facial expression, eye gaze and manual gestures, and tactile signals, such as grooming and huddling, which are used for social cohesion. Analysing synchronous physical action can help us identify communication signals and may prove a better way to understand of how animals 'talk' to each other."

The method - known as multidimensional method (MDM) - can also be used to study other non-verbal groups. Dr Sebestyen Forrester is now piloting a study of children aged between two and four years with language impairments. "Data from this method could help us to better understand the nonverbal communication signals that were important for the evolution of language and are still necessary for the development of normal language skills," she says. "I hope it will lead to better diagnoses of conditions such as autism and the creation of new health and education programmes to help these children at an early stage. Current diagnostic tests are based on how well a child can understand verbal instruction, but if we look for other ways to communicate with them we may be able to learn much more about what is going on for them."

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>