Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good preparation is key – even for plant cells and symbiotic fungi

11.11.2011
Not only mineral oil and petroleum gas, also phosphorous is a scarce resource.

Phosphorous, this important and essential mineral, is part of our DNA and, therefore, irreplaceable. Many soils are already depleted for phosphorous and plants growing on them are only able to take up enough phosphorous by living in symbiosis with arbuscular mycorrhizal fungi (AM fungi). This symbiosis is a non-synchronous process, which means that different cells in the root can show different phases of symbiotic interaction with the fungus. For this reason, the scientists used laser capture microdissection to excise single root cells and deciphered their specific gene activity.

When scientists are analysing the molecular composition of plant cells they usually assume that different cells from the same tissue are alike. In many cases, this assumption is true. The majority of cells from leaves, stems or roots show similar levels of gene expression and metabolic activity. It gets more complicated when plants undergo symbiosis, because interactions with the symbiotic partner may alter the cell’s metabolism. And even cells adjacent to colonised cells that have not yet come into direct contact with the fungus can show drastic changes in their gene expression levels.

The most prevalent plant symbiosis is that between root cells and arbuscular mycorrhizal fungi, called AM fungi. AM fungi make sure that plants can grow on nutrient-depleted soil – unnoticed by most people. These fungi outstretch their filamentary cells, called hyphae, far into the soil and are thereby able to take up more nutrients than plants can absorb with their roots. The fungus takes up mainly phosphate, but possibly also nitrate and metal ions like copper, zinc and iron and gives these willingly to the plant. In return, it is rewarded with sugars that plants produce via photosynthesis.

Interestingly, fungus and plant cell never really merge; they are constantly separated by membranes, the outer boundaries of the cells. To enable the relatively big sugar and phosphate molecules to pass through these membranes, the plant cells insert big protein complexes that resemble tunnels through which the molecules can freely travel from one cell to another. This was already known, and it was not astounding that the scientists around Franziska Krajinski found genes that encode for such transport proteins to be highly expressed in cells that are already colonised by the fungus. A more surprising discovery was, however, that even cells that are in close vicinity of the colonised cells seemed to be already reprogrammed. More than 800 genes showed enhanced activity exclusively in these cells. “The higher transcription rate of genes that are responsible for transport proteins, lipid acid metabolism and gene regulation does not seem to be a result of the colonisation by the fungus,” explains Nicole Gaude, first author of the study. “It is more likely that cells are preparing themselves for an imminent colonisation by the fungus.”

These very precise and specific results were obtained with the help of laser capture microdissection. In this method, a laser beam is used to excise individual cells from a tissue. At least 5000 cells were cut out by Gaude and her team; a time-consuming manual labour that even Sisyphus would have been proud of. But the time and effort were worth it. “We now know which genes are activated even before a symbiosis is physically established,” explains Gaude.

Understanding the symbiotic programme of plants could enable the use of AM fungi in agriculture and reduce the application of expensive, artificial fertilizer in the future.

Contact

Nicole Gaude/Franziska Krajinski
Max-Planck-Institute of Molecular Plant Physiology
Tel. 0331/567 8355
Gaude@mpimp-golm.mpg.de
Krajinski@mpimp-golm.mpg.de
Claudia Steinert
Public Relations
Max-Planck-Institute of Molecular Plant Physiology
Tel. 0331/567 8275
Steinert@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de
Original Work
Nicole Gaude, Silvia Bortfeld, Nina Duensing, Marc Lohse, Franziska Krajinski
Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo a massive and specific reprogramming during arbuscular mycorrhizal development

The Plant Journal, Advanced Online Publication 06 October, DOI: 10.1111/j.1365-313X.2011.04810.x

Ursula Ross-Stitt | Max-Planck-Institut
Further information:
http://www-en.mpimp-golm.mpg.de/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>