Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How good cholesterol turns bad

22.02.2012
Berkeley Lab researchers find new evidence on how cholesterol gets moved from HDLs to LDLs

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have found new evidence to explain how cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol from "good" high density lipoproteins (HDLs) to "bad" low density lipoproteins (LDLs). These findings point the way to the design of safer, more effective next generation CETP inhibitors that could help prevent the development of heart disease.

Gang Ren, a materials physicist and electron microscopy expert with Berkeley Lab's Molecular Foundry, a DOE nanoscience research center, led a study in which the first structural images of CETP interacting with HDLs and LDLs were recorded. The images and structural analyses support the hypothesis that cholesterol is transferred from HDLs to LDLs via a tunnel running through the center of the CETP molecule.

"Our images show that CETP is a small (53 kilodaltons) banana-shaped asymmetric molecule with a tapered N-terminal domain and a globular C-terminal domain," Ren says. "We discovered that the CETP's N-terminal penetrates HDL and its C-terminal interacts with LDL forming a ternary complex. Structure analyses lead us to hypothesize that the interaction may generate molecular forces that twist the terminals, creating pores at both ends of the CETP. These pores connect with central cavities in the CETP to form a tunnel that serves as a conduit for the movement of cholesterol from the HDL."

Ren reports the results of this study in a paper in the journal Nature Chemical Biology titled "Structure basis of transfer between lipoproteins by cholesteryl ester transfer protein." Co-authoring this paper were Lei Zhang, Feng Yan, Shengli Zhang, Dongsheng Lei, M. Arthur Charles, Giorgio Cavigiolio, Michael Oda, Ronald Krauss, Karl Weisgraber, Kerry-Anne Rye, Henry Powna and Xiayang Qiu.

Cardiovascular or heart disease, mainly atherosclerosis, remains the leading cause of death in the United States and throughout the world. Elevated levels of LDL cholesterol and/or reduced levels of HDL cholesterol in human plasma are major risk factors for heart disease. Since CETP activity can reduce HDL-cholesterol concentrations and CETP deficiency is associated with elevated HDL-cholesterol levels, CETP inhibitors have become a highly sought-after pharmacological target for the treatment of heart disease. However, despite this intense clinical interest in CETP, little is known concerning the molecular mechanisms of CETP-mediated cholesterol transfers among lipoproteins, or even how CETP interacts with and binds to lipoproteins.

"It has been very difficult to investigate CETP mechanisms using conventional structural imaging methods because interaction with CETP can alter the size, shape and composition of lipoproteins, especially HDL," Ren says. "We were successful because we used our optimized negative-staining electron microscopy protocol that allows us to flash-fix the structure and efficiently screen more than 300 samples prepared under different conditions."

Ren and his colleagues used their optimized negative-staining electron microscopy protocol to image CETP as it interacted with spherical HDL and LDL particles. Image processing techniques yielded three-dimensional reconstructions of CETP and CETP-bound HDL. Molecular dynamic simulations were used to assess CETP molecular mobility and predict the changes that would be associated with cholesterol transfer. CETP antibodies were used to identify the CEPT interaction domains and validate the cholesterol transfer model by inhibiting CETP. This model presents inviting new targets for future CETP inhibitors.

"Our model identifies new interfaces of CETP that interact with HDL and LDL and delineates the mechanism by which the transfer of cholesterol takes place," Ren says. "This is an important step toward the rational design of next generation CETP inhibitors for treating cardiovascular disease."

This research was supported in part by the DOE Office of Science, and in part by W. M. Keck foundations, the Chinese Ministry of Education, the National Institutes of Health, and the Tobacco Related Disease Research Program of California.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>