Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good Bacteria Can Be EZ Pass for Oral Vaccine Against Anthrax

18.02.2009
Researchers at North Carolina State University have discovered that the good bacteria found in dairy products and linked to positive health benefits in the human body might also be an effective vehicle for an oral vaccine that can provide immunity to anthrax exposure. The approach could possibly be used to deliver any number of specific vaccines that could block other types of viruses and pathogens.

The oral vaccine riding inside the good bacteria makes it way through the stomach and into the small intestine, an important immunological organ, where it easily and efficiently binds to cells that trigger an immune response – in this case, protection against anthrax in mice.

The finding, published the week of Feb. 16 in the online edition of Proceedings of the National Academy of Sciences, shows that an oral vaccine can be as effective as one given by needle, a potentially huge advance in drug delivery. Most vaccines are proteins, and as such normally won’t maintain their effectiveness after being digested in the stomach.

The good bacteria – Lactobacillus acidophilus, a lactic acid bacteria – are naturally found in dairy products like milk and cheese, and are added by manufacturers to foods like yogurt. They are used in food fermentationas, are safe for consumption and some are considered as probiotics that contribute to our general health and well being.

In the paper, Dr. Todd Klaenhammer, Distinguished University Professor and William Neal Reynolds Professor in the Department of Food, Bioprocessing and Nutrition Sciences, Dr. Tri Duong from the functional genomics program at NC State, and colleagues from the U.S. Army Medical Research Institute of Infectious Disease show that the acid tolerant lactic acid bacteria can act like an EZ Pass, delivering the anthrax vaccine through the stomach and releasing it into the small intestine.

There, the vaccine targets the first line of immune cells, dendritic cells, that can trigger the mucosal immune system to respond and elicit protection against anthrax. In the study, the oral vaccine worked about as well as a vaccine delivered by needle, the standard way of inoculating living things from viruses and pathogens.

“Normally, you can’t eat vaccines because the digestive process in the stomach destroys them, so vaccines are administered by needle,” Klaenhammer says. “But using ‘food grade’ lactic acid bacteria as a vehicle provides a safe way of getting the vaccine into the small intestine without losing any of the drug’s efficacy in binding to the dendritic cells, which can then trigger an immune response.”

Klaenhammer and his colleagues are now attempting to use lactic acid bacteria to carry varying types of oral vaccines to provide immunity to important viruses and pathogens. They are also working to improve the efficiency of binding of Lactobacillus acidophilus and the vaccine to dendritic cells.

“Can we make these generally recognized as safe lactic acid bacteria into a premier delivery system for vaccines and biotherapeutics? That’s the question we’re now trying to answer,” Klaenhammer says.

The study was funded by a grant from the National Institutes of Health and the North Carolina Dairy Foundation.

Note to editors: An abstract of the paper follows.

“Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge”
Authors: M. Mohamadzadeh, Northwestern University; T. Duong, Washington State University; S.J. Sandwick and T. Hoover, U.S. Army Medical Research Institute of Infectious Diseases; and Todd Klaenhammer, North Carolina State University;

Published: The week of Feb. 16, 2009, online in Proceedings of the National Academy of Sciences

Abstract: Efficient vaccines potentiate antibody avidity and increase T cell longevity, which confer protection against microbial lethal challenge. A vaccine strategy was established by using Lactobacillus acidophilus to deliver Bacillus anthracis protective antigen (PA) via specific dendritic cell-targeting peptides to dendritic cells (DCs), which reside in the periphery and mucosal surfaces, thus directing and regulating acquired immunity. The efficiency of oral delivery of L. acidophilus expressing a PA-DCpep fusion was evaluated in mice challenged with lethal B. anthracis Sterne. Vaccination with L. acidophilus expressing PA-DCpep induced robust protective immunity against B. anthracis Sterne compared with mice vaccinated with L. acidophilus expressing PA-control peptide or an empty vector. Additionally, serum anti-PA titers, neutralizing PA antibodies, and the levels of IgA-expressing cells were all comparable with the historical recombinant PA plus aluminum hydroxide vaccine administered s.c. Collectively, development of this strategy for oral delivery of DC-targeted antigens provides a safe and protective vaccine via a bacterial adjuvant that may potentiate mucosal immune responses against deadly pathogens.

Dr. Todd Klaenhammer, 919/515-2972 or klaenhammer@ncsu.edu

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>