Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gonorrhea acquires a piece of human DNA

14.02.2011
First evidence of gene transfer from human host to bacterial pathogen offers new view of evolution, disease

If a human cell and a bacterial cell met at a speed-dating event, they would never be expected to exchange phone numbers, much less genetic material. In more scientific terms, a direct transfer of DNA has never been recorded from humans to bacteria.

Until now. Northwestern Medicine researchers have discovered the first evidence of a human DNA fragment in a bacterial genome – in this case, Neisseria gonorrhoeae, the bacterium that causes gonorrhea. Further research showed the gene transfer appears to be a recent evolutionary event.

The discovery offers insight into evolution as well as gonorrhea's nimble ability to continually adapt and survive in its human hosts. Gonorrhea, which is transmitted through sexual contact, is one of the oldest recorded diseases and one of a few exclusive to humans.

"This has evolutionary significance because it shows you can take broad evolutionary steps when you're able to acquire these pieces of DNA," said study senior author Hank Seifert, professor of microbiology and immunology at Northwestern University Feinberg School of Medicine. "The bacterium is getting a genetic sequence from the very host it's infecting. That could have far reaching implications as far as how the bacteria can adapt to the host."

It's known that gene transfer occurs between different bacteria and even between bacteria and yeast cells. "But human DNA to a bacterium is a very large jump," said lead author Mark Anderson, a postdoctoral fellow in microbiology. "This bacterium had to overcome several obstacles in order to acquire this DNA sequence."

The paper will be published Feb. 14 in the online journal mBio.

The finding suggests gonorrhea's ability to acquire DNA from its human host may enable it to develop new and different strains of itself. "But whether this particular event has provided an advantage for the gonorrhea bacterium, we don't know yet, " Seifert said.

Every year an estimated 700,000 people in the United States and 50 million worldwide acquire gonorrhea. While the disease is curable with antibiotics, only one drug is now recommended for treatment because the disease developed resistance to previously used antibiotic options over the past four decades.

Gonorrhea is a particularly serious disease for women. If left untreated, gonorrhea can lead to pelvic inflammatory disease, a painful condition that can cause sterility and ectopic pregnancy. In rare cases, men and women can develop a form of the disease that leaves the genital tract and enters the bloodstream, causing arthritis and endocarditis, an infection of the inner lining of the heart.

An ancient disease that sounds like gonorrhea is described in the Bible, noted Seifert, who has studied the disease for 28 years. Most of his research focuses on how the bacterium evades the human immune system by altering its appearance and modulating the action of white blood cells.

The gene transfer was discovered when the genomic sequences of several gonorrhea clinical isolates were determined at the Broad Institute in Cambridge, Mass. Three of the 14 isolates had a piece of DNA where the sequence of DNA bases (A's, T's, C's and G's) was identical to an L1 DNA element found in humans.

In Seifert's Feinberg lab, Anderson sequenced the fragment to reconfirm it was indeed identical to the human one. He also showed that this human sequence is present in about 11 percent of the screened gonorrhea isolates.

Anderson also screened the bacterium that causes meningitis, Neisseria meningitidis, and is very closely related to gonorrhea bacteria at the genetic level. There was no sign of the human fragment, suggesting the gene transfer is a recent evolutionary event.

"The next step is to figure out what this piece of DNA is doing," Seifert said.

The research was sponsored by the National Institutes of Health.
NORTHWESTERN NEWS: www.northwestern.edu/newscenter/

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>