Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golden Rods

08.09.2008
For medical applications: production of gold nanorods without the use of cytotoxic additives

Gold nanoparticles are under consideration for a number of biomedical applications, such as tumor treatment. A German-American research team at Carnegie Mellon University in Pittsburgh, Hunter College in New York, and the RWTH Aachen has now developed a new method for the production of nanoscopic gold rods.

In contrast to previous methods, they have achieved this without the use of cytotoxic additives. As they report in the journal Angewandte Chemie, the synthesis is not carried out in water, but in an ionic liquid, a “liquid salt”.

Cancer cells are relatively temperature-sensitive. This is exploited in treatments involving overheating of parts of the cancer patient’s body. One highly promising method is photoinduced hyperthermia, in which light energy is converted to heat. Gold nanoparticles absorb light very strongly in the near infrared, a spectral region that is barely absorbed by tissue. The absorbed light energy causes the gold particles to vibrate and is dissipated into the surrounding area as heat. The tiny gold particles can be functionalized so that the specifically bind to tumor cells. Thus, only cells that contain gold particles are killed off.

The problem? Ordinary spherical gold particles do not efficiently convert the light energy into heat; only rod-shaped particles will do. Unfortunately, the additives needed to crystallize the rod-shaped particles from aqueous solutions are cytotoxic.

The team headed by Michael R. Bockstaller is now pursuing a new strategy: instead of aqueous solution, they chose to use an ionic liquid as their medium of crystallization. Ionic liquids are “liquid salts”, organic compounds that exist as oppositely charged ions, but in the liquid state. In this way, the researchers have been able to produce gold nanorods without the use of any cytotoxic additives.

In the first step, seed crystals are produced in the form of tiny spherical gold particles. These crystals are added to a “secondary growth solution” containing monovalent gold ions, silver ions, and the weak reducing agent ascorbic acid. The solvent is an imidazolium-based ionic liquid. In this medium, the crystals don’t continue to grow into spheres; instead they form rods with the round crystallization nuclei as “heads”. The mechanism is presumed to involve the various, energetically inequivalent surfaces of the crystal lattice: the aromatic, nitrogen-containing five-membered rings of the ionic liquid prefer to accumulate at the highly energetic facets of gold surfaces. They thus stabilize crystal shapes that have fewer low-energy facets than the normal spherical equilibrium form. This results in long rods.

Author: Michael R. Bockstaller, Carnegie Mellon University, Pittsburgh (USA), http://neon.mems.cmu.edu/people/bockstaller.htm

Title: Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods

Angewandte Chemie International Edition 2008, 47, No. 40, doi: 10.1002/anie.200802185

Michael R. Bockstaller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://neon.mems.cmu.edu/people/bockstaller.htm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>