Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Gold Nanoparticles to Hit Cancer Where It Hurts

17.02.2010
Taking gold nanoparticles to the cancer cell and hitting them with a laser has been shown to be a promising tool in fighting cancer, but what about cancers that occur in places where a laser light can’t reach?

Scientists at the Georgia Institute of Technology have shown that by directing gold nanoparticles into the nuclei of cancer cells, they can not only prevent them from multiplying, but can kill them where they lurk. The research appeared as a communication in the February 10 edition of the Journal of the American Chemical Society.

“We’ve developed a system that can kill cancer cells by shining light on gold nanoparticles, but what if the cancer is in a place where we can’t shine light on it? To fix that problem, we’ve decorated the gold with a chemical that brings it inside the nucleus of the cancer cell and stops it from dividing,” said Mostafa El-Sayed, Regents professor and director of the Laser Dynamics Laboratory at Georgia Tech.

Once the cell stops dividing, apoptosis sets in and kills the cell.

“In cancer, the nucleus divides much faster than that of a normal cell, so if we can stop it from dividing, we can stop the cancer,” said El-Sayed.

The team tested their hypothesis on cells harvested from cancer of the ear, nose and throat. They decorated the cells with an argininge-glycine-aspartic acide petipde (RGD) to bring the gold nano-particles into the cytoplasm of a cancer cell but not the healthy cells and a nuclear localization signal peptide (NLS) to bring it into the nucleus.

In previous work they showed that just bringing the gold into the cytoplasm does nothing. In this current study, they found that implanting the gold into the nucleus effectively kills the cell.

“The cell starts dividing and then it collapses,” said El-Sayed. “Once you have a cell with two nuclei, it dies.”

The gold works by interfering with the cells’ DNA, he added. How that works exactly is the subject of a follow-up study.

“Previously, we’ve shown that we can bring gold nanoparticles into cancer cells and by shining a light on them, can kill the cells. Now we’ve shown that if we direct those gold nanoparticles into the nucleus, we can kill the cancer cells that are in spots we can’t hit with the light,” said El-Sayed.

Next the team will test how the treatment works in vivo.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>