Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GM-CSF required for the immune attack in multiple sclerosis

26.04.2011
The neutralization of the cytokine GM-CSF could halt the development of multiple sclerosis.

This was demonstrated by the research team of the immunologist Burkhard Becher at the University of Zurich in an animal model. Unlike other known cytokines, they write in the journal Nature Immunology, this messenger substance is essential for the development of the disease. By the end of this year, a clinical trial will be launched in which GM-CSF is to be neutralized in MS patients.

The immune systems main task is to protect us from pathogenic microorganisms. To do so, an armada of immune cells is diligently instructed to search for invading pathogens. The ability of immune cells to communicate with one another is vital to this protection. Mistakes in the communication can lead to ‘misunderstandings’ and an erroneous attack against ones own tissues. Such is the case in autoimmune diseases such as multiple sclerosis (MS), rheumatoid arthritis and juvenile diabetes, where the immune system inadvertently attacks the body. So-called helper T cells are chiefly responsible for the fatal immune response.

There are various sub-classes of helper T cells with different tasks and responsibilities. Clinicians and researchers have long been trying to ascertain which sub-class the rogue T cells that attack the body’s own organs in autoimmune diseases actually belong to. T cells release certain messenger substances, known as cytokines, which in turn coordinate the appropriate immune response. Until now, the type of T-cell and, above all, the relevant cytokine that causes the inflammation in the brain and spinal cord were not known.

The research team of Professor Burkhard Becher has spent six years testing the relevant cytokines by a process of elimination in transgenic mouse models of multiple sclerosis. Over the years, they were able to cross many factors off the list before eventually hitting the jackpot with GM-CSF (granulocyte macrophage colony-stimulating factor). GM-CSF is produced by a newly discovered subclass of helper T cells. “The MS-like disease could not be induced in mice without GM-CSF,” says Becher. “What’s more, the disease could even be cured in MS mice if the cytokine was neutralized.”

GM-CSF is not a new cytokine; we already knew that it can cause or aggravate inflammation. Apart from GM-CSF, however, all the other cytokines studied thus far only played a minor role. “GM-CSF is therefore the first T-cell cytokine that’s essential for the initiation of an inflammatory reaction,” says Becher. Furthermore, the researchers were able to demonstrate that the GM-CSF delivered to the brain by T cells activates the recruitment of tissue-damaging scavenger cells. “Without scavenger cells like these, the inflammation can’t really get going in the first place and the neutralization of GM-CSF can even reverse the inflammatory process,” says the immunologist.

Patients suffering from rheumatoid arthritis are currently being treated with neutralizing antibodies against GM-CSF in a clinical trial. A trial with MS patients is due to begin at the end of 2011. “We’re extremely hopeful,” says Becher enthusiastically. “But whether this form of therapy will actually help MS patients remains to be seen. Quiet optimism is the way to go,” he explains.

Irrespective of the clinical trial, the team expects the study to have a significant impact on basic and clinical research. “We’re really making headway; we now understand much better how an inflammatory lesion can develop in the brain.”

References:
Codarri, L., Gyülveszi, G., Magnenat, L., Hesske, L., Fontana, A., Suter, T., and Becher, B. RORgt drives production oft he cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology, doi: 10.1038/ni.2027
Contact:
Prof. Burkhard Becher
Institute of Experimental Immunology
University of Zurich
Tel. +41-44-635-3701
Email: becher@immunology.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch
http://www.uzh.ch

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>