Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glue, fly, Glue: Underwater Silk for Surgical Sutures?

01.03.2010
Like silkworm moths, butterflies and spiders, caddisfly larvae spin silk, but they do so underwater instead on dry land. Now, University of Utah researchers have discovered why the fly's silk is sticky when wet and how that may make it valuable as an adhesive tape during surgery.

"Silk from caddisfly larvae – known to western fly fishermen as 'rock rollers' – may be useful some day as a medical bioadhesive for sticking to wet tissues," says Russell Stewart, an associate professor of bioengineering and principal author of a new study of the fly silk's chemical and structural properties.

"I picture it as sort of a wet Band-Aid, maybe used internally in surgery – like using a piece of tape to close an incision as opposed to sutures," he adds. "Gluing things together underwater is not easy. Have you ever tried to put a Band-Aid on in the shower? This insect has been doing this for 150 million to 200 million years."

The new study, funded by the National Science Foundation, is set for publication this week in Biomacromolecules, a journal of the American Chemical Society.

There are thousands of caddisfly species worldwide in an order of insects named Trichoptera that are related to Lepidoptera, the order that includes moths and butterflies that spin dry silk. Because caddisflies are eaten by trout, fly fishermen use caddisfly lures. Some species spend their larval stages developing underwater, and build an inch-long, tube-shaped case or shelter around themselves using sticky silk and grains of rock or sand. Other species use silk, small sticks and pieces of leaves.

Each larva has a head and four legs that stick out from the tube. The larval case often is conical because it gets wider as the larva grows. A caddisfly larva eventually pupates, sealing off the tube as it develops into an adult fly and then hatches.

Aquatic caddisflies and terrestrial butterflies and moths diverged from a common silk-spinning ancestor some 150 million to 200 million years ago. Caddisflies now live around the world in waters ranging from fast streams to quiet marshes.

"The caddisflies' successful penetration into diverse aquatic habitats is largely due to the inventive use by their larva of underwater silk to build elaborate structures for protection and food gathering," the new study says.

Caddisflies fall into subgroups. Brachycentrus echo, the species Stewart studied, is one of the casemakers, which build their case and then drag it along with them underwater as they forage for food. Some caddisfly larva are retreatmakers, which build a stationary dome-shaped shelter glued to a rock, with a silk net to catch passing food.

From Sea Glue to Sticky Fly Silk

Stewart studies natural adhesives, including glue produced in intertidal ocean waters by the sandcastle worm. It has potential as glue for repairing small broken bones.

He got interested in caddisfly larva adhesive silk tape after he was contacted by a Smithsonian Institution scientist who showed him several of the tube-shaped larval cases.

"We looked inside a case through a microscope and saw these silk struts between the rocks and realized this is really interesting," he says. "So I came home and put on my fly fishing boots and started wandering mountain streams looking for caddisfly larvae."

Stewart and study co-author Ching Shuen Wang – who works in Stewart's lab – studied the caddisfly species B. echo from the lower Provo River about an hour south of Salt Lake City. Bioengineering undergraduate student Nick Ashton gathered the fly larvae and figured out how to keep them alive in the lab.

"There's just a fascinating diversity of these insects. Their adhesive is able to bond to a wide range of surfaces underwater: soft and hard, organic and inorganic. If we could copy this adhesive it would be useful on a wide range of tissue types."

Caddisfly larvae extrude adhesive silk ribbon out of an organ known as the spinneret. The products of two silk glands converge there, so the extruded adhesive looks like a double ribbon with a seam the long way. The larvae weave this sticky mesh back and forth around sand grains, sticks or leaf pieces to create the tubes they occupy.

Stewart and colleagues grew caddisfly larvae in aquariums, but with glass beads instead of the sand and rock grains found in streams. The larvae expanded their rock cases using the beads, which were glued together from the inside by wet silk ribbons.

The researchers broke off some beads to obtain clean samples of silk. They analyzed the silk using several methods, including scanning electron microscopy, which showed how silk fibers stitched together the glass beads from inside of the shelter case.

"It's like using Scotch tape on the inside of a box to hold it together," Stewart says. "It's really like a tape more than anything else – a tape that works underwater."

Stewart hasn't studied the strength of the caddisfly silk, but plans to do so.

"Individual threads aren't very strong, but it lays down dozens of them. If we can copy this material and make tape out of it, the bond strength would go up dramatically."

The Chemistry and Structure of Wet Silk from Caddisflies

Stewart's study included detailed analysis of the chemistry and structure of the caddisfly silk, showing how it is similar to what silkworm moths produce for use in textiles and even to spider web silk, but with adaptations that make it work underwater.

Stewart says his goal was to characterize the adhesive silk fiber "for the purpose of trying to copy it" so a synthetic version can be used as a surgical adhesive.

he found the caddisfly silk is a fiber made of large proteins named fibroin (fye-bro-in) with an amino acid named serine making up a fifth of the amino acids in fibroin.

The key difference between dry silks from moths and butterflies and wet silks from caddisflies is that the serines in the silk from caddisflies are "phosphorylated," meaning phosphates are added to the serines as the fibroin silk protein is synthesized.

"Phosphates are well-known adhesion promoters used in dental fixtures such as crowns or fillings," says Stewart. "They are also in latex paints that are water-based, and the phosphates increase the adhesion of those paints. The paint industry discovered this fairly recently. Caddisflies have been doing this for at least 150 million years."

The phosphates attached to the serines are negatively charged. Other amino acids in the protein are positively charged. Stewart found that is a key factor in making silk underwater. Chains of proteins – each with alternating regions of positive and negative charges – line up in parallel with positive and negative charges attracting each other.

"Imagine those chains aligned side-by-side, but staggered so the pluses and minuses are lined up, which then forms silk fibers with lots and lots of these protein chains in one fiber," Stewart says. "You wouldn't be able to make shirts out of it, but you might be able to make wet Band-Aids."

Stewart made a counterintuitive finding about how wet silks are made. "These fibroin proteins that make up the silks are water-soluble because of the electrical charges. Ironically – and this is our hypothesis for now – the association of those plus or minus charges makes them water-insoluble. This is how you make a silk fiber under water."

Comparison with amino acids from three other caddisfly species found great similarities, suggesting other caddisflies also use phosphorylation to spin silk underwater.

Stewart says caddisfly silk and sandcastle worm glue are similar: their proteins are heavily phosphorylated and have a large number of positively charged amino acids.

He says the ability to make adhesives underwater now has been identified in four phyla – major categories of living organisms – that include caddisflies, sandcastle worms, mussels and sea cucumbers.

"They came to this underwater adhesion solution completely independently," showing that it repeatedly evolved because of its value in helping the creatures live and thrive, Stewart says.

For information of the University of Utah College of Engineering, see: http://www.coe.utah.edu

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu
http://www.unews.utah.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>