Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose: Potential new target for combating annual seasonal influenza

16.12.2013
Reducing viruses' glucose supply weakens the microbes' ability to infect mammalian cells in lab cultures

Reducing glucose metabolism dials down influenza viral infection in laboratory cell cultures, providing an entirely new approach for combating seasonal flu, according to research that will be presented on Sunday, Dec. 15, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

While annual flu shots are based on the U.S. Centers for Disease Control (CDC)'s predictions of the viruses that will be in widest circulation each flu season, the new approach targets one metabolic requirement of all influenza viruses: glucose.

Reducing viruses' glucose supply weakens the microbes' ability to infect host cells, said Amy Adamson, Ph.D., and Hinissan Pascaline Kohio of the University of North Carolina, Greensboro.

Fever, ache, and the other miseries of influenza viral infection afflict 5 to 20 percent of the U.S. population each year. While the flue is usually not life-threatening to the majority of its victims, the Spanish flu pandemic of 1918 demonstrated that flu viruses can evolve into lethal agents that spread worldwide. Because flu viruses change continually through mutation and genetic swaps, the CDC reformulates the flu vaccine each year

Yet to infect cells, the influenza virus is dependent upon the actions of the cell's own proteins, and so another strategy for slowing viral infection would be to target essential viral needs, for example, their dependence on cellular glucose. Dr. Adamson and Kohio showed that influenza A infection can be controlled in laboratory cultures of mammalian cells by altering glucose metabolism.

When the influenza virus initially infects a cell, and the virus is confined in an endocytic vesicle, the viral proteins HA and M2 use the acidic environment inside the vesicle to fuse the viral lipid envelope with that of the vesicle, and then release the viral genome into the cytosol. The acidic pH that mediates these important viral process is established and maintained by the cell's vacuolar-type H+ ATPase (V-ATPase) proton pump. The researchers found that this dependence could be used to manipulate the infection's success.

Dr. Adamson and Kohio boosted glucose concentrations in the laboratory cell cultures, and influenza infection rate concomitantly increased. Treating the viral cells with a chemical that inhibits glucose metabolism significantly decreased viral replication in the lab cultures. The researchers also demonstrated that the infection could be restored to high levels simply by adding ATP, the major source of energy for cellular reactions, bypassing the need for glucose.

Looking closer, they discovered that higher levels of glucose promoted the assembly of the V-ATPase proton pump that drives the release of the influenza A genome into the cytoplasm, the internal watery environment of the cell.

When Dr. Adamson and Kohio added the glucose inhibitor to the cell cultures, the assembly of the molecular pump was suppressed. Viral infection, they concluded, was closely tied to the assembly of the V-ATPase pump, and this dependence could be used to manipulate infection success.

Specifically, they were able to suppress viral infection of cells by dismantling the V-ATPase through the lowering of glucose levels. In addition, they inhibited infection by treating cells with chemical inhibitors of glycolysis, the initial pathway of glucose catabolism. Conversely, influenza viral infection of cells could be increased by giving cells more glucose than normal, the researchers report in the journal Virology, http://www.ncbi.nlm.nih.gov/pubmed/23876457.

The ease with which the researchers could dial viral infection down by controlling glucose levels and thus V-ATPase activity suggested a new strategy for throttling influenza viral infection.

"Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection," said Dr. Adamson and Kohio.

CONTACT:

Amy L. Adamson, Ph.D.
University of North Carolina at Greensboro
336-256-0312
aladamso@uncg.edu
ASCB PRESS CONTACTS:

John Fleischman
jfleischman@ascb.org
513-706-0212
Cathy Yarbrough
Cyarbrough@ascb.org
858-243-1814
Author will present, "Glycolytic Control of Vacuolar-Type ATPase Activity: A Mechanism to Regulate Influenza Viral Infection," on Sunday, Dec. 15, in the 1:30 to 3 p.m. poster session, "Host-pathogens/Host-commensal Interactions II."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.ascb.org
http://www.ncbi.nlm.nih.gov/pubmed/23876457

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>