Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Spirals

04.03.2011
Chemical scaffolds guide living cells into precisely defined three-dimensional patterns

To find our way, we use maps. Cells use “chemical maps” to find the way: they orient themselves by following concentration gradients of attractants or repellants.

David H. Gracias and a team at Johns Hopkins University (Baltimore, USA) have now developed a clever new method to produce three-dimensional patterns of chemical concentration gradients in vitro—with previously unattainable versatility and precision in both space and time.

As the scientists report in the journal Angewandte Chemie, they use tiny containers of different shapes and patterned with different arrangements of slits through which chemical messenger substances can diffuse. They were thus able to induce fluorescing cells to organize themselves into a glowing green spiral.

Concentration gradients not only can guide bacteria, fungi, and amoebae; they are also very important in the early stages of embryogenesis because the development of seed leaves (cotyledon) is controlled through concentration gradients of messenger molecules. Three-dimensional chemical patterns play a role in many physiological and pathological processes, including the growth of blood vessels, regulation of blood pressure and heart rate, and tumor metastasis. Our immune cells also follow concentration gradients to find the spot where they are needed.

In order to examine these processes more closely, scientists want to imitate such chemical gradients in vitro. Making a three-dimensional chemical pattern and maintaining it long enough is not so easy. Previous microfluidic methods only allowed for the generation of two-dimensional patterns of limited size. An alternative technique discussed here is the diffusion of chemicals through precisely formed porous containers in stationary media. Variation of the container geometry and pore pattern in the walls makes it possible to realize a wide variety of three-dimensional concentration patterns.

The special trick: Gracias and his co-workers “build” their containers from two-dimensional surfaces held together with tiny hinges. These were designed so that the containers fold up on their own when heated and then stay tightly closed on cooling. In this way, they are able to make containers ranging in size from 100 nm to a few millimeters for potential applications at the sub-cellular to tissue scale. Before being folded, established lithographic methods can be used to perforate each surface with a well-defined arrangement of slits or holes with nano-microscale precision.

With an offset arrangement of slits on four surfaces of a cube shaped container, the researchers were able to release an attractant to generate a concentration gradient in the form of a spiral winding around the container. Fluorescing bacteria followed this pattern and arranged themselves into a glowing spiral.

Author: David Gracias, Johns Hopkins University, Baltimore (USA), http://www.jhu.edu/chembe/gracias/

Title: Direction of Cellular Self-Organization by the Generation of Three- Dimensional Chemical Patterns

Angewandte Chemie International Edition 2011, 50, No. 11, 2549–2553, Permalink to the article: http://dx.doi.org/10.1002/anie.201007107

David Gracias | Angewandte Chemie
Further information:
http://www.jhu.edu/chembe/gracias/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>