Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Spirals

04.03.2011
Chemical scaffolds guide living cells into precisely defined three-dimensional patterns

To find our way, we use maps. Cells use “chemical maps” to find the way: they orient themselves by following concentration gradients of attractants or repellants.

David H. Gracias and a team at Johns Hopkins University (Baltimore, USA) have now developed a clever new method to produce three-dimensional patterns of chemical concentration gradients in vitro—with previously unattainable versatility and precision in both space and time.

As the scientists report in the journal Angewandte Chemie, they use tiny containers of different shapes and patterned with different arrangements of slits through which chemical messenger substances can diffuse. They were thus able to induce fluorescing cells to organize themselves into a glowing green spiral.

Concentration gradients not only can guide bacteria, fungi, and amoebae; they are also very important in the early stages of embryogenesis because the development of seed leaves (cotyledon) is controlled through concentration gradients of messenger molecules. Three-dimensional chemical patterns play a role in many physiological and pathological processes, including the growth of blood vessels, regulation of blood pressure and heart rate, and tumor metastasis. Our immune cells also follow concentration gradients to find the spot where they are needed.

In order to examine these processes more closely, scientists want to imitate such chemical gradients in vitro. Making a three-dimensional chemical pattern and maintaining it long enough is not so easy. Previous microfluidic methods only allowed for the generation of two-dimensional patterns of limited size. An alternative technique discussed here is the diffusion of chemicals through precisely formed porous containers in stationary media. Variation of the container geometry and pore pattern in the walls makes it possible to realize a wide variety of three-dimensional concentration patterns.

The special trick: Gracias and his co-workers “build” their containers from two-dimensional surfaces held together with tiny hinges. These were designed so that the containers fold up on their own when heated and then stay tightly closed on cooling. In this way, they are able to make containers ranging in size from 100 nm to a few millimeters for potential applications at the sub-cellular to tissue scale. Before being folded, established lithographic methods can be used to perforate each surface with a well-defined arrangement of slits or holes with nano-microscale precision.

With an offset arrangement of slits on four surfaces of a cube shaped container, the researchers were able to release an attractant to generate a concentration gradient in the form of a spiral winding around the container. Fluorescing bacteria followed this pattern and arranged themselves into a glowing spiral.

Author: David Gracias, Johns Hopkins University, Baltimore (USA), http://www.jhu.edu/chembe/gracias/

Title: Direction of Cellular Self-Organization by the Generation of Three- Dimensional Chemical Patterns

Angewandte Chemie International Edition 2011, 50, No. 11, 2549–2553, Permalink to the article: http://dx.doi.org/10.1002/anie.201007107

David Gracias | Angewandte Chemie
Further information:
http://www.jhu.edu/chembe/gracias/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>