Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Flowers for Ultra-Trace Analysis of TNT

27.08.2012
Selective optical TNT detection down to the sub-zeptomole level

Highly sensitive and highly selective tests are important for the early detection of disease, the detection of environmental toxins, or for the detection of explosives at airports. Increased selectivity for the target analytes helps to avoid false-positive results.



In the journal Angewandte Chemie, Indian scientists have now introduced a specific detection method for the explosive TNT that can be used to detect even a single molecule.

Thalappil Pradeep, Ammu Mathew, and P. R. Sajanlal at the Indian Institute of Technology Madras use an ingenious combination of micro- and nanostructures as sensors: gold mesoflowers, flower-shaped gold particles about 4 µm in size, act as supports for silver clusters, tiny clumps of exactly 15 silver atoms embedded in the protein bovine serum albumin. When irradiated with light of the right wavelength, the silver clusters luminesce, giving off red light. The gold of the mesoflower supports intensifies the fluorescence. Their unique shape is a particular advantage, because it is easy to unambiguously identify under an optical microscope, unlike spherical particles.

If a drop of a solution containing TNT is applied, it reacts with the amino groups of the bovine serum albumin to make a Meisenheimer complex—a reaction specific to TNT. This extinguishes the red glow of the silver clusters. In order to make this reaction even more distinct, the researchers also embedded a green fluorescing dye, which was adsorbed on a silicon dioxide layer grown on the gold flowers. As long as the silver clusters glow red, the green fluorescence is suppressed. When TNT molecules switch off the red light, the green dye begins to glow. The color change from red to green can be observed with a fluorescence microscope.

A TNT concentration of one ppb (part per billion) extinguishes the fluorescence, one ppt (part per trillion), reduces it markedly. The researchers supplemented their luminescence technique with a second analytical method, SERS (surface-enhanced Raman scattering), which also functions extremely well with a version of the flower-shaped sensors. “This allowed us to attain detection limits as low as the sub-zeptomole range (10-21 mol),” explains Pradeep. Just one “flower” is enough to operate as a sensor. It reacts when it comes into contact with as few as nine molecules. A device based on this principle is under development.

The researchers were also able to detect mercury with similar sensitivity by using the same sensor strategy. Says Pradeep: “Our concept could also be used for the ultra-trace analysis of other substances through the incorporation of specific ligands on the sensors.”

About the Author
Dr. Pradeep is Professor of Chemistry at the Indian Institute of Technology Madras, Chennai, India. He heads the Thematic Unit of Excellence and the Unit of Nanoscience sponsored by the Department of Science and Technology. He is a Fellow of the Indian Academy of Sciences and is a receipient of some of the highest recognitions for scientists in India.
Author: Thalappil Pradeep, Indian Institute of Technology Madras, Chennai (India), http://www.dstuns.iitm.ac.in/t-pradeep.php
Title: Selective Visual Detection of TNT at the Sub-Zeptomole Level
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203810

Thalappil Pradeep | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.dstuns.iitm.ac.in/t-pradeep.php

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>