Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing Flowers for Ultra-Trace Analysis of TNT

27.08.2012
Selective optical TNT detection down to the sub-zeptomole level

Highly sensitive and highly selective tests are important for the early detection of disease, the detection of environmental toxins, or for the detection of explosives at airports. Increased selectivity for the target analytes helps to avoid false-positive results.



In the journal Angewandte Chemie, Indian scientists have now introduced a specific detection method for the explosive TNT that can be used to detect even a single molecule.

Thalappil Pradeep, Ammu Mathew, and P. R. Sajanlal at the Indian Institute of Technology Madras use an ingenious combination of micro- and nanostructures as sensors: gold mesoflowers, flower-shaped gold particles about 4 µm in size, act as supports for silver clusters, tiny clumps of exactly 15 silver atoms embedded in the protein bovine serum albumin. When irradiated with light of the right wavelength, the silver clusters luminesce, giving off red light. The gold of the mesoflower supports intensifies the fluorescence. Their unique shape is a particular advantage, because it is easy to unambiguously identify under an optical microscope, unlike spherical particles.

If a drop of a solution containing TNT is applied, it reacts with the amino groups of the bovine serum albumin to make a Meisenheimer complex—a reaction specific to TNT. This extinguishes the red glow of the silver clusters. In order to make this reaction even more distinct, the researchers also embedded a green fluorescing dye, which was adsorbed on a silicon dioxide layer grown on the gold flowers. As long as the silver clusters glow red, the green fluorescence is suppressed. When TNT molecules switch off the red light, the green dye begins to glow. The color change from red to green can be observed with a fluorescence microscope.

A TNT concentration of one ppb (part per billion) extinguishes the fluorescence, one ppt (part per trillion), reduces it markedly. The researchers supplemented their luminescence technique with a second analytical method, SERS (surface-enhanced Raman scattering), which also functions extremely well with a version of the flower-shaped sensors. “This allowed us to attain detection limits as low as the sub-zeptomole range (10-21 mol),” explains Pradeep. Just one “flower” is enough to operate as a sensor. It reacts when it comes into contact with as few as nine molecules. A device based on this principle is under development.

The researchers were also able to detect mercury with similar sensitivity by using the same sensor strategy. Says Pradeep: “Our concept could also be used for the ultra-trace analysis of other substances through the incorporation of specific ligands on the sensors.”

About the Author
Dr. Pradeep is Professor of Chemistry at the Indian Institute of Technology Madras, Chennai, India. He heads the Thematic Unit of Excellence and the Unit of Nanoscience sponsored by the Department of Science and Technology. He is a Fellow of the Indian Academy of Sciences and is a receipient of some of the highest recognitions for scientists in India.
Author: Thalappil Pradeep, Indian Institute of Technology Madras, Chennai (India), http://www.dstuns.iitm.ac.in/t-pradeep.php
Title: Selective Visual Detection of TNT at the Sub-Zeptomole Level
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203810

Thalappil Pradeep | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.dstuns.iitm.ac.in/t-pradeep.php

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>