Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing DNA invention points towards high speed disease detection

10.10.2012
Many diseases, including cancers, leave genetic clues in the body just as criminals leave DNA at the scene of a crime. But tools to detect the DNA-like sickness clues known as miRNAs, tend to be slow and expensive.

Now a chemist and a biologist from University of Copenhagen have invented a method that promises to shave days off the lab work done to reveal diseases, using cheap methods and easy to use analytical apparatuses.

Fast, quick and elegant

Chemistry researcher Tom Vosch and plant molecular biologist Seong Wook Yang invented a DNA sensor, coupling genetic material to a luminous molecule which goes dark only in the presence of a specific target. Details on their invention, Silver Nano cluster DNA-probes, are published in the high profile scientific journal, ACS NANO and Tom Vosch is understandably proud of the invention.

"t's an unusually quick and elegant method for screening
Tom Vosch, Department of Chemistry, Nano Science Centre

”We invented a probe that emits light only as long as the sample is clean. That is an unusually elegant and easy way to screen for a particular genetic target”, says Vosch of the Department of Chemistry's Nano Science Centre.

DNA-clues help detecting disease

You could say that the inventors took their cue from crime detection. In murder cases police technicians use DNA to identify the killer. Similarly Individuals with disease are likely to have a unique miRNA profile. Any disease that is attacking a patient leaves this genetic clue all over the victim. And because the profiles of miRNAs vary by type of cancer, finding it proves beyond a reasonable doubt what made the patient sick.

Gene magnets stick to opposites

The new detection method exploits a natural quality of genetic material. A single DNA strand is made up of molecules, so called bases, ordered in a unique combination. When two strands join to form their famous double helix, they do so by sticking to complementary copies of themselves. Likewise strands tailored to match particular miRNAs will stick to the real thing with uncanny precision. But detecting this union of the strands was only made possible when Vosch and Yang paired their skills.

A real kill switch

Tom Vosch is specialized in studying molecules that light up. Seong Wook Yang is specialized in miRNA. Together they figured out how to attach the light emitting molecules to DNA sensors for miRNA detection. Vosch and Yang discovered, that when these luminous DNA-strands stick with microRNA-strands, their light is snuffed out, giving a very visible indication that the target miRNA is present in the sample. In other words: When the light goes out, the killer is in the house.

Likely to lead to high speed cancer diagnostics

Vosch and Yang tested their Silver Nano Cluster DNA probes with eight different types of genetic material and found that they work outright with six of them. But more importantly, they figured out how to fix the ones, that didn’t. This indicates that their method will work in the detection of almost all types of miRNAs, also in all likelihood for cancer related miRNAs. The most widespread current miRNA detection method requires some 48 hours of lab work from raw samples. The new method can do the same job of detection within a maximum of 6 hours.

Human by accident

A new research method that’s fast, precise and cheap sounds destined for public health-related researches. But the method wasn’t initially meant to find diseases-related miRNAs in humans, says Yang.

”When we started working on the probe, I just wanted to develop a fast and cheap method for detecting plant miRNAs,” explains Seong Wook Yang, and Vosch continues.

”For years I had been making and studying luminous Silver Nano Clusters formed in DNA. Coupling that with Yang’s intimate knowledge of the inner workings of miRNA and the rest of his biological toolboxes turned out extremely fruitful,”concludes Vosch.

Links to publications:
http://pubs.acs.org/doi/abs/10.1021/nn302633q
http://pubs.acs.org/doi/abs/10.1021/ac201903n

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>