Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glow and be eaten – marine bacteria use light to lure plankton and fish

27.02.2012
‘Survival of the brightest’

Not all that glitters is gold. Sometimes it is just bacteria trying to get ahead in life.

Many sea creatures glow with a biologically produced light. This phenomenon, known as bioluminescence, is observed, among others, in some marine bacteria which emit a steady light once they have reached a certain level of concentration (a phenomenon called “quorum sensing”) on organic particles in ocean waters.

Though this was a known occurrence, the benefits of producing light remained unclear.

Now, in an article published recently in the Proceedings of the National Academy of Sciences of the USA (PNAS), researchers of the Hebrew University of Jerusalem have unraveled the mystery of why the marine bacteria glow. It has to do with what might be called “the survival of the brightest.”

The article is based on the research carried out at the Interuniversity Institute for Marine Sciences in Eilat by graduate student Margarita Zarubin, under the supervision of Prof. Amatzia Genin, the head of the Department of Evolution, Systematics and Ecology at the Hebrew University of Jerusalem, in collaboration with Prof. Shimshon Belkin and his student Michael Ionescu of the Hebrew University’s Silberman Institute of Life Sciences.

Their findings show that the light emitted by the bacteria attracts predators, generally zooplankton, which ingest the bacteria but are unable to digest them. The bacteria, which continue to glow inside the zooplankton’s guts, reveal the presence of the now-glowing zooplankton, which in turn, are attacked by their own predators – fish -- who can spot them readily in the dark.

In experiments conducted by the researchers in total darkness, they found that nocturnal fish were easily able to detect the glowing zooplankton and eat them, while, on the other hand, the fish were not attracted to zooplankton that had swallowed bacteria that had undergone genetic mutation and thus did not glow.

Further investigation of nocturnal fish that had fed on zooplankton showed that the luminous bacteria also survived the passage through the fish guts. “As far as the bacteria are concerned, their access to the fish digestive systems is like reaching ‘paradise’ – a safe place, full of nutrients, and also a means of transport into the wide ocean,” explained Prof. Genin.

On the other hand, the finding that some zooplankton are attracted to the glow of the bacteria and consume the luminous matter seems to be in contradiction to their own survival instincts, since it increases the chances of the zooplankton being attacked and eaten by fish. The phenomenon of quorum sensing that regulates bacterial bioluminescence can explain this finding, say the researchers. The zooplankton “know” that a light in the water indicates the presence of a rich presence of organic material on which the bacteria grow.

“In the dark, deep ocean the quantity of food is very limited, therefore it is worthwhile for the zooplankton to take the risk of becoming glowing themselves when contacting and consuming the particle with glowing bacteria, since the profit of finding rare food there is greater than the danger of exposing themselves to the relatively rare presence of predatory fish,” explained Prof. Genin.

Photo links:
http://media.huji.ac.il/new/photos/hu120226_sea_bacteria_1.jpg http://media.huji.ac.il/new/photos/hu120226_sea_bacteria_2.jpg
Captions
1. Glowing zooplankton after eating glowing bacteria;
2. Glowing bacteria in petri dishes.
(Hebrew University photos)
CONTACT:
Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Plankton Quorum Sensing Zooplankton marine bacteria

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>